《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 20-28.doi: 10.6040/j.issn.1671-9352.0.2023.369
• • 上一篇
买阿丽1,孙国伟1,2*
MAI Ali1, SUN Guowei1,2*
摘要: 建立具有捕食者扩散时滞和扩散损耗的捕食-食饵种群斑块模型,分析模型共存平衡点的稳定性,并证明在大多数情况下,捕食者斑块间的扩散时滞不会影响共存平衡点的稳定性。但当扩散率和扩散损耗满足一定条件时,扩散时滞导致系统出现稳定开关现象。最后通过数值模拟验证理论结果的正确性。
中图分类号:
[1] JANSEN V. The dynamics of two diffusively coupled predator-prey populations[J]. Theoretical Population Biology, 2001, 59(2):119-131. [2] XIAO Siheng, WANG Yuanshi, WANG Shikun, Effects of preys diffusion on predator-prey systems with two patches[J]. Bulletin of Mathematical Biology, 2021, 83(45):1-21. [3] XIA Yue, CHEN Lijuan, SRIVASTAVA V, et al. Stability and bifurcation analysis of a two-patch model with the Allee effect and dispersal[J]. Mathematical Biosciences and Engineering, 2023, 20(11):19781-19807. [4] HUFFAKER C, KENNETT C. Experimental studies on predation:predation and cyclamen-mite populations on strawberries in California[J]. Hilgardia, 1956, 26(4):191-222. [5] KANG Yun, SASMAL S, MESSAN K. A two-patch prey-predator model with predator dispersal driven by the predation strength[J]. Mathematical Biosciences & Engineering, 2017, 14(4):843-880. [6] FENG Wei, HINSON J. Stability and pattern in two-patch predator-prey population dynamics[J]. Discrete and Continuous Dynamical Systems, 2005, 2005:268-279. [7] SAHA S, SAMANTA G. Influence of dispersal and strong Allee effect on a two-patch predator-prey model[J]. International Journal of Dynamics and Control, 2019, 7:1321-1349. [8] HUANG Rong, WANG Yuanshi, WU Hong. Population abundance in predator-prey systems with predators dispersal between two patches[J]. Theoretical Population Biology, 2020, 135:1-8. [9] HAUZY C, GAUDUCHON M, HULOT F, et al. Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities[J]. Journal of Theoretical Biology, 2010, 266(3):458-469. [10] LIAO Kangling, LOU Yuan. The effect of time delay in a two-patch model with random dispersal[J]. Bulletin of Mathematical Biology, 2014, 76:335-376. [11] ZHANG Chunmei, SHI Lin. Graph-theoretic method on the periodicity of coupled predator-prey systems with infinite delays on a dispersal network[J]. Physica A: Statistical Mechanics and its Applications, 2021, 561:125-255. [12] ZHANG Yuxiang, LUTSCHER F, GUICHARD F. The effect of predator avoidance and travel time delay on the stability of predator-prey metacommunities[J]. Theoretical Ecology, 2015, 8(3):273-283. [13] MAI Ali, SUN Guowei, ZHANG Fengqin, et al. The joint impacts of dispersal delay and dispersal patterns on the stability of predator-prey metacommunities[J]. Journal of Theoretical Biology, 2019, 462:455-465. [14] MAI Ali, SUN Guowei, WANG Lin. Impacts of the dispersal delay on the stability of the coexistence equilibrium of a two-patch predator-prey model with random predator dispersal[J]. Bulletin of Mathematical Biology, 2019, 81(5):1337-1351. [15] SUN Guowei, MAI Ali. Stability switches in a ring-structured predator-prey metapopulation model with dispersal delay[J]. Advances in Difference Equation, 2020, 2020(196):1-19. [16] MAI Ali, SUN Guowei, WANG Lin. Effects of dispersal on competitive coexistence in a two-patch competition model[J]. Mathematical Methods in the Applied Sciences, 2023, 46:10527-10539. [17] COOKE K, GROSSMAN Z. Discrete delay, distributed delay and stability switches[J]. Journal of Mathematical Analysis and Applications, 1982, 86(2):592-627. [18] KUANG Yang. Delay differential equations: with applications in population dynamics[M]. Boston:Academic Press, 1993. [19] HALE J, LUNEL S. Introduction to functional differential equations[M]. New York: Springer Science & Business Media, 1993. |
[1] | 张赵柳,范小明. 广义分数布朗运动下的双重Heston跳扩散模型欧式期权定价[J]. 《山东大学学报(理学版)》, 2025, 60(3): 60-68. |
[2] | 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83. |
[3] | 苗卉,夏米西努尔·阿布都热合曼. 具有胞间传播和蛋白酶抑制剂的时滞HIV模型的动力学分析[J]. 《山东大学学报(理学版)》, 2024, 59(4): 90-97. |
[4] | 阿迪力·艾力,开依沙尔·热合曼. 求解广义Burgers-Fisher方程的微分求积法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 30-39. |
[5] | 艾露露,刘蕴贤. 半导体问题漂移扩散模型的超弱间断Galerkin方法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 10-21. |
[6] | 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88. |
[7] | 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103. |
[8] | 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91. |
[9] | 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81. |
[10] | 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59. |
[11] | 刘云,朱鹏俊,陈路遥,宋凯. 基于边缘计算的收益激励算法对区块链分片的优化[J]. 《山东大学学报(理学版)》, 2023, 58(7): 88-96. |
[12] | 黄钰,高广花. 第三类Dirichlet边界下四阶抛物方程的紧差分格式[J]. 《山东大学学报(理学版)》, 2023, 58(4): 16-28. |
[13] | 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53. |
[14] | 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126. |
[15] | 韩梦洁,刘俊利. 具有不完全接种的反应扩散禽流感模型[J]. 《山东大学学报(理学版)》, 2023, 58(10): 106-121. |
|