《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 69-76.doi: 10.6040/j.issn.1671-9352.0.2024.084
周小英1,2,吉晨1,涂晓艺1*
ZHOU Xiaoying1,2, JI Chen1, TU Xiaoyi1*
摘要: 构建变点分位数回归模型,该模型由1条直线和1条二次曲线在变点处相交而成,可以灵活处理变点数据,还能捕捉响应变量分布的全貌。由于变点参数的存在,使得模型的损失函数是非凸的,给估计参数带来了挑战。为了解决这个问题,基于线性化技术将损失函数线性化,利用迭代算法,同时得到变点参数和其他参数的估计,给出估计量的区间估计。数值模拟结果表明,本文的估计方法具有良好的相合性和有效性,人均国内生产总值与电力质量数据的实证分析也验证了所提模型和方法的可行性和实用性。
中图分类号:
[1] HUDSON D J. Fitting segmented curves whose join points have to be estimated[J]. Journal of the American Statistical Association, 1966, 61(316):1097-1129. [2] ROBISON D E. Estimates for the points of intersection of two polynomial regressions[J]. Journal of the American Statistical Association, 1964, 59(305):214-224. [3] FEDER P I. The log likelihood ratio in segmented regression[J]. The Annals of Statistics, 1975, 3(1):84-97. [4] CHAPPELL R. Fitting bent lines to data, with applications to allometry[J]. Journal of Theoretical Biology, 1989, 138(2):235-256. [5] JONES M C, HANDCOCK M S. Determination of anaerobic threshold: what anaerobic threshold?[J]. The Canadian Journal of Statistics, 1991, 19(2):236-239. [6] HANSEN B E. Inference when a nuisance parameter is not identified under the null hypothesis[J]. Econometrica, 1996, 64(2):413-430. [7] BAI Jushan. Likelihood ratio tests for multiple structural changes[J]. Journal of Econometrics, 1999, 91(2):299-323. [8] LERMAN P M. Fitting segmented regression models by grid search[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 1980, 29(1):77-84. [9] MUGGEO V M. Estimating regression models with unknown break-points[J]. Statistics in Medicine, 2003, 22(19):3055-3071. [10] LEE S, SEO M H, SHIN Y. Testing for threshold effects in regression models[J]. Journal of the American Statistical Association, 2011, 106(493):220-231. [11] 蒋家坤,林华珍,蒋靓,等. 门槛回归模型中门槛值和回归参数的估计[J]. 中国科学(数学),2016,46(4):409-422. JIANG Jiakun, LIN Huazhen, JIANG Liang, et al. Estimation of threshold values and regression parameters in threshold regression model[J]. SCIENTIA SINICA Mathematica, 2016, 46(4):409-422. [12] PASTOR R, GUALLAR E. Use of two-segmented logistic regression to estimate change-points in epidemiologic studies[J]. American Journal of Epidemiology, 1998, 148(7):631-642. [13] ZHANG Feipeng, YANG Jiejing, LIU Lei, et al. Generalized linear-quadratic model with a change point due to a covariate threshold[J]. Journal of Statistical Planning and Inference, 2022, 216:194-206. [14] KOENKER R, BASSETT G. Regression quantiles[J]. Journal of the Econometric Society, 1978, 46(1):33-50. [15] LI Chenxi, WEI Ying, CHAPPELL R, et al. Bent line quantile regression with application to an allometric study of land mammals speed and mass[J]. Biometrics, 2011, 67(1):242-249. [16] FERGUSON R, WILKINSON W, HILL R. Electricity use and economic development[J]. Energy Policy, 2000, 28(13):923-934. [17] WOLDE-RUFAEL Y. Electricity consumption and economic growth: a time series experience for 17 African countries[J]. Energy Policy, 2006, 34(10):1106-1114. [18] ZHOU Xiaoying, ZHANG Feipeng. A new estimation method for continuous threshold expectile model[J]. Communications in Statistics: Simulation and Computation, 2018, 47(8):2486-2498. [19] ZHANG Feipeng, ZHENG Shenglin, ZHOU Xiaoying. Bent-cable quantile regression model[J]. Communications in Statistics: Simulation and Computation, 2023, 52(5):2000-2011. [20] 周小英. 逐段连续线性分位数回归模型的统计推断及其应用[D]. 长沙:湖南大学,2018. ZHOU Xiaoying. Statistical inference and application in continuous threshold linear quantile regression model[D]. Changsha: Hunan University, 2018. |
[1] | 侯成婷,陈占寿. 基于LSCUSUM方法的RCA(1)模型参数变点检验[J]. 《山东大学学报(理学版)》, 2025, 60(3): 107-115. |
[2] | 李学文,冯可馨,王小刚. 删失分位数回归模型中的多变点估计[J]. 《山东大学学报(理学版)》, 2025, 60(2): 96-104. |
[3] | 高琦,戴洪帅,武艳华. 基于MPEWMA控制图的串联排队网络的监测与控制[J]. 《山东大学学报(理学版)》, 2023, 58(8): 104-110, 117. |
[4] | 朱慧敏,王梓楠,高敏,杨文志. 方差变点模型CUSUM型估计量的相合性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 106-114. |
[5] | 王小刚,冯可馨. 分段线性删失分位数回归模型的变点估计[J]. 《山东大学学报(理学版)》, 2023, 58(11): 35-44. |
[6] | 娘毛措, 陈占寿, 成守尧, 汪肖阳. 具有长记忆误差的线性回归模型参数变点的在线监测[J]. 《山东大学学报(理学版)》, 2022, 57(4): 91-99. |
[7] | 王小刚,李冰. 基于核函数方法的逐段线性Tobit回归模型估计[J]. 《山东大学学报(理学版)》, 2020, 55(6): 1-9. |
[8] | 梁小林,郭敏,李静. 更新几何过程的参数估计[J]. 山东大学学报(理学版), 2017, 52(8): 53-57. |
[9] | 王小刚1,2, 王黎明1,3*. 一类面板模型中部分结构变点的检测和估计[J]. J4, 2012, 47(7): 91-99. |
|