《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 65-75.doi: 10.6040/j.issn.1671-9352.0.2024.353
• • 上一篇
孙清1,2,叶军1,2*,曾广财1,2,宋苏洋1,2,汪一心3
SUN Qing1,2, YE Jun1,2*, ZENG Guangcai1,2, SONG Suyang1,2, WANG Yixin3
摘要: 本文结合蝙蝠算法和紧密度改进三支K-means算法,利用黄金分割系数和种群平均位置优化蝙蝠算法,根据优化后的蝙蝠算法搜索初始聚类中心,提高三支K-means算法的稳定性。依据紧密度判断核心域和边界域的阈值,减少边界域样本数量,提高三支K-means算法的准确性。对比实验采用9个数据集与6种聚类算法,实验结果表明本文算法提升聚类性能,验证本文算法有效性和实用性。
中图分类号:
| [1] SAMBASIVAM S, THEODOSOPOULOS N. Advanced data clustering methods of mining web documents[J]. Issues in Informing Science and Information Technology, 2006, 5(3):563-579. [2] 章永来,周耀鉴. 聚类算法综述[J]. 计算机应用,2019,39(7):1869-1882. ZHANG Yonglai, ZHOU Yaojian. Review of clustering algorithms[J]. Journal of Computer Applications, 2019,39(7):1869-1882. [3] 张雨如. 基于动态建模的层次聚类算法研究[D]. 徐州:中国矿业大学,2022. ZHANG Yuru. Research on hierarchical clustering using dynamic modeling [D]. Xuzhou: China University of Mining and Technology, 2022. [4] 陈叶旺,申莲莲,钟才明,等. 密度峰值聚类算法综述[J]. 计算机研究与发展,2020,57(2):378-394. CHEN Yewang, SHEN Lianlian, ZHONG Caiming, et al. Survey on density peak clustering algorithm[J]. Journal of Computer Research and Development, 2020, 57(2):378-394. [5] 马福民,宫婷,杨帆,等. 基于Zipf分布的网格密度峰值聚类算法[J]. 控制与决策,2024,39(2):577-587. MA Fumin, GONG Ting, YANG Fan, et al. Grid density peak clustering algorithm based on zipf distribution[J]. Control and Decision, 2024, 39(2):577-587. [6] YAO Yiyu, PAWAN Lingras, WANG Ruizhi, et al. Interval set cluster analysis: a reformulation[C] //Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Berlin: Springer, 2009:398-405. [7] YAO Yiyu. The superiority of three way decisions in probabilistic rough set models[J]. Information Sciences, 2011, 181(6):1080-1096. [8] 于洪,王国胤,姚一豫. 决策粗糙集理论研究现状与展望[J]. 计算机学报,2015,38(8):1628-1639. YU Hong, WANG Guoyin, YAO Yiyu. Current research and future perspectives on decision-theoretic rough sets[J]. Chinese Journal of Computers, 2015, 38(8):1628-1639. [9] YU Hong, ZHANG Cong, WANG Guoyin. Overlapping clustering method using the three-way decision theory[J]. Knowledge Based Systems, 2016, 91:189-203. [10] 于洪,毛传凯. 基于k-means的自动三支决策聚类方法[J]. 计算机应用,2016,36(8):2061-2065. YU Hong, MAO Chuanka. Automatic three-way decision clustering algorithm based on k-means[J]. Journal of Computer Applications, 2016, 36(8):2061-2065. [11] 解滨,董新玉,梁皓伟. 基于三支动态阈值K-means聚类的入侵检测算法[J]. 郑州大学学报(理学版),2020,52(2):64-70. XIE Bin, DONG Xinyu, LIANG Haowei. An algorithm of intrusion detection based on three-way dynamic threshold K-means clustering[J]. Journal of Zhengzhou University(Natural Science Edition), 2020, 52(2):64-70. [12] 李洪梅,姜冬勤,王平心. 基于邻域样本稳定性的三支聚类方法[J]. 山西大学学报(自然科学版),2020,43(4):874-879. LI Hongmei, JIANG Dongqin, WANG Pingxin. Three-way clustering based on neighborhood samples stability[J]. Journal of Shanxi University(Natural Science Edition), 2020, 43(4):874-879. [13] 李飞江,钱宇华,王婕婷,等. 基于样本稳定性的聚类方法[J]. 中国科学(E辑:信息科学),2020,50(8):1239-1254. LI Feijiang, QIAN Yuhua, WANG Jieting, et al. Clustering method based on samples stability[J]. Science in China(Series E: Information Sciences), 2020, 50(8):1239-1254. [14] 李浩溥. 基于稳定性和相似性的三支聚类算法研究[D]. 哈尔滨:哈尔滨师范大学,2023. LI Haobo. Three way K-means algorithm based on sample stability and similarity[D]. Harbin: Harbin Normal University, 2023. [15] 花遇春,赵燕,马建敏. 基于共现概率的三支聚类模型[J]. 西北大学学报(自然科学版),2022,52(5):797-804. HUA Yuchun, ZHAO Yan, MA Jianmin. Three-way clustering model based on co-occurrence probability[J]. Journal of Northwest University(Natural Science Edition), 2022, 52(5):797-804. [16] 叶廷宇,叶军,王晖,等. 结合人工蜂群优化的粗糙K-means聚类算法[J]. 计算机科学与探索,2022,16(8):1923-1932. YE Tingyu, YE Jun, WANG Hui, et al. Rough K-means clustering algorithm combined with artificial bee colony optimization[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(8):1923-1932. [17] 李兆彬,叶军,周浩岩,等. 变异萤火虫优化的粗糙K-均值聚类算法[J]. 山东大学学报(工学版),2023,53(4):74-82. LI Zhaobin, YE Jun, ZHOU Haoyan, et al. A rough K-means clustering algorithm optimized by mutation firefly algorithm [J]. Journal of Shandong University(Engineering Science), 2023,53(4):74-82. [18] 李兆彬,叶军,周浩岩,等. 融合变异萤火虫算法的三支聚类方法[J]. 系统仿真学报,2025,37(3):646-656. LI Zhaobin, YE Jun, ZHOU Haoyan, et al. Three-way decision clustering algorithm fusion of mutant fireflies algorithm[J]. Journal of System Simulation, 2025, 37(3):646-656. [19] 徐天杰,王平心,杨习贝. 基于人工蜂群的三支K-means聚类算法[J]. 计算机科学,2023,50(6):116-121. XU Tianjie, WANG Pingxin, YANG Xibei. Three-way K-means clustering based on artificial bee colony[J]. Computer Science, 2023, 50(6):116-121. [20] 王梦绚,万仁霞,苗夺谦,等. 基于三支决策的蚁群聚类算法[J]. 昆明理工大学学报(自然科学版),2024,49(1):83-97. WANG Mengxun, WAN Renxia, MIAO Duoqian, et al. An ant colony clustering algorithm based on three way decision[J]. Journal of Kunming University of Science and Technology(Natural Science), 2024, 49(1): 83-97. [21] 高艳龙,万仁霞,陈瑞典. 基于粒子群的三支聚类算法[J]. 福州大学学报(自然科学版),2022,50(3):301-307. GAO Yanlong, WANG Renxia, CHEN Ruidian. A three-way clustering algorithm based on particle swarm optimization[J] Journal of Fuzhou University( Natural Science Edition), 2022, 50(3):301-307. [22] YANG Xinshe. A new metaheuristic bat-inspired algorithm[J]. Computer Knowledge & Technology, 2010, 284:65-74. [23] 许德刚,赵萍. 蝙蝠算法研究及应用综述[J]. 计算机工程与应用,2019,55(15):1-12. XU Degang, ZHAO Ping. Literature survey on research and application of bat algorithm[J]. Computer Engineering and Applications, 2019, 55(15): 1-12. [24] 倪昌浩,邹海. 基于改进蝙蝠算法的移动机器人路径规划方法研究[J]. 制造业自动化,2021,43(6):53-56,62. NI Changhao, ZOU Hai. Research on path planning method of mobile robot based on improved bat algorithm[J]. Manufacturing Automation, 2021, 43(6):53-56,62. [25] 丁元明,侯孟珂. 改进蝙蝠算法的无人机路径规划[J]. 兵器装备工程学报,2023,44(9):26-33. DING Yuanming, HOU Mengke. UAV path planning based on improved bat algorithm[J]. Journal of Ordnance Equipment Engineering, 2023, 44(9):26-33. [26] 张瑾,洪莉,戴二壮. 求解带容量和时间窗约束车辆路径问题的改进蝙蝠算法[J]. 计算机工程与科学,2021,43(8):1479-1487. ZHANG Jin, HONG Li, DAI Erzhuang. An improved bat algorithm for the vehicle routing problem with time windows and capacity constraints[J] Computer Engineering & Science, 2021, 43(8):1479-1487. [27] TANYILDIZI E, ÖZKAYA G. An improved golden sine algorithm for global optimization problems[J]. Applied Soft Computing, 2018, 68(3):160-175. [28] DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 1(2):224-227. [29] ROUSSEEUW P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20(7):53-65. |
| [1] | 钱文彬,彭嘉豪,蔡星星. 基于邻域粒度与三支决策的知识表示学习方法[J]. 《山东大学学报(理学版)》, 2025, 60(7): 94-103. |
| [2] | 国栋凯,张钦然,李小南,易黄建. 基于新型阴影集的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2025, 60(1): 74-82. |
| [3] | 范敏,秦琴,李金海. 基于三支因果力的邻域推荐算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 12-22. |
| [4] | 朱金,付玉,管文瑞,王平心. 基于自然最近邻的样本扰动三支聚类[J]. 《山东大学学报(理学版)》, 2024, 59(5): 45-51. |
| [5] | 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89. |
| [6] | 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104. |
| [7] | 徐华畅,许倩,赵钰琳,梁峰宁,徐凯,朱红. 基于改进EfficientNetV2的脑胶质瘤IDH1突变状态预测方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 60-66. |
| [8] | 王君宇,杨亚锋,薛静轩,李丽红. 可拓序贯三支决策模型及应用[J]. 《山东大学学报(理学版)》, 2023, 58(7): 67-79. |
| [9] | 胡成祥,张莉,黄晓玲,王汇彬. 面向属性变化的动态邻域粗糙集知识更新方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 37-51. |
| [10] | 方宇,郑胡宇,曹雪梅. 三支过采样的不平衡数据分类方法[J]. 《山东大学学报(理学版)》, 2023, 58(12): 41-51. |
| [11] | 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 《山东大学学报(理学版)》, 2023, 58(1): 59-66. |
| [12] | 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45. |
| [13] | 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 《山东大学学报(理学版)》, 2022, 57(8): 68-76. |
| [14] | 施极,索中英. 基于区间数层次分析法的损失函数确定方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 28-37. |
| [15] | 杨洁,罗天,李阳军. 基于TOPSIS的无标签序贯三支决策模型[J]. 《山东大学学报(理学版)》, 2022, 57(3): 41-48. |
|
||