您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (7): 94-103.doi: 10.6040/j.issn.1671-9352.4.2024.534

• • 上一篇    

基于邻域粒度与三支决策的知识表示学习方法

钱文彬,彭嘉豪,蔡星星*   

  1. 江西农业大学软件学院, 江西 南昌 330045
  • 发布日期:2025-07-01
  • 通讯作者: 蔡星星(1987— ),女,讲师,硕士,研究方向为机器学习、知识图谱和多源数据融合. E-mail:caixx@jxau.edu.cn
  • 作者简介:钱文彬(1984— ),男,教授,博士,研究方向为多标签学习、粒计算和知识发现. E-mail:qianwenbin1027@126.com*通信作者:蔡星星(1987— ),女,讲师,硕士,研究方向为机器学习、知识图谱和多源数据融合. E-mail:caixx@jxau.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2022YFD1600202);国家自然科学基金资助项目(62366019);江西省自然科学基金资助项目(20224BAB202015)

Knowledge graph representation learning based on neighborhood granularity and three-way decision

QIAN Wenbin, PENG Jiahao, CAI Xingxing*   

  1. College of Software, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
  • Published:2025-07-01

摘要: 提出了一种基于邻域粒度与三支决策理论的知识表示学习方法,该方法采用2阶段的框架式增强算法,第1阶段通过知识表示学习方法拟合知识图谱中的节点与关系,映射其中蕴含的语义信息进入低维向量空间;第2阶段,通过划分低维向量表示的邻域粒度,捕捉和利用语义信息中的潜藏相似关系,并辅以三支决策对邻域粒度所挖掘的相似语义信息进行精准的划分,再将所挖掘出的潜藏信息对模型进行重训练,提升知识表示学习方法的准确性与鲁棒性。本文选定5种经典的知识表示学习模型,并在4个公开的大型知识图谱数据集上进行实验,通过实验结果验证了本方法的有效性。

关键词: 知识图谱, 知识表示学习, 邻域粒度, 三支决策

Abstract: A knowledge representation learning method based on neighborhood granularity and three-way decision theory(NGTwD)is proposed. The method is implemented using a two-stage enhancement algorithm framework. In the first stage, knowledge representation learning is utilized to fit the nodes and relations in the knowledge graph, and map the embedded semantic information into a low-dimensional vector space. To better capture and exploit the latent similarities in the semantic information, the neighborhood granularity of the low-dimensional vector representations is divided in the second stage. This process is further complemented by applying three-way decision theory to precisely segment the similar semantic information. The extracted latent information is then used to retrain the model, thereby improving the accuracy and robustness of the knowledge representation learning method. Five classic knowledge representation learning models are selected, and experiments are conducted on four large publicly available knowledge graph datasets. The effectiveness of the proposed method is validated through the experimental results.

Key words: knowledge graph, knowledge graph representation learning, neighborhood granularity, three-way decision

中图分类号: 

  • TP391
[1] JIShaoxiong, PAN Shirui, CAMBRIA Erik, et al. A survey on knowledge graphs:representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):494-514.
[2] 张天成,田雪,孙相会,等. 知识图谱嵌入技术研究综述[J]. 软件学报,2023,34(1):277-311. ZHANGTiancheng, TIAN Xue, SUN Xianghui, et al. Overview on knowledge graph embedding technology research[J]. Journal of Software, 2023, 34(1):277-311.
[3] 王萌,王昊奋,李博涵,等. 新一代知识图谱关键技术综述[J]. 计算机研究与发展,2022,59(9):1947-1965. WANG Meng, WANG Haofen, LI Bohan, et al. Survey on key technologies of new generation knowledge graph[J]. Journal of Computer Research and Development, 2022, 59(9):1947-1965
[4] DING Juanjuan, ZHANG Chao, LI Deyu, et al. Three-way decisions in generalized intuitionistic fuzzy environments: survey and challenges[J]. Artificial Intelligence Review, 2024, 57(2):38.
[5] YIN Longjun, ZHANG Qinghua, ZHAO Fan, et al. Superiority of three-way decisions from the perspective of probability[J]. Artificial Intelligence Review, 2023, 56(2):1263-1295.
[6] YAO Yiyu. Three-way decision: an interpretation of rules in rough set theory[C] //Rough Sets and Knowledge Technology: 4th International Conference,Gold Coast: Springer, 2009:642-649.
[7] CAO Jiahang, FANG Jinyuan, MENG Zaiqiao, et al. Knowledge graph embedding: a survey from the perspective of representation spaces[J]. ACM Computing Surveys, 2024, 56(6):1-42.
[8] YANG Jing, YANG Laurence T, WANGHao, et al. Representation learning for knowledge fusion and reasoning in cyber-physical-social systems: survey and perspectives[J]. Information Fusion, 2023, 90:59-73.
[9] ANTELMI Alessia, CORDASCO Gennaro, POLATO Mirko, et al. A survey on hypergraph representation learning[J]. ACM Computing Surveys, 2023, 56(1):1-38.
[10] WANG Zhen, ZHANG Jianwen, FENG Jianlin, et al. Knowledge graph embedding by translating on hyperplanes[C] //Proceedings of the AAAI conference on artificial intelligence. Quebec City: AAAI, 2014:1112-1119.
[11] ZHONG Lingfeng, WU Jia, LI Qian, et al. A comprehensive survey on automatic knowledge graph construction[J]. ACM Computing Surveys, 2023, 56(4): 94:1-94.
[12] PENG Ciyuan, XIA Feng, NASERIPARSA Mehdi, et al. Knowledge graphs: opportunities and challenges[J]. Artificial Intelligence Review, 2023, 56(11):13071-13102.
[13] HONG Qinghang, BAI Yushi, TAO Guanyu, et al. Improving knowledge graph embedding with numerical edge features: a pRotatE approach[C] //Proceedings of the 2020 IEEE International Conference on Data Mining, Los Alamitos: IEEE, 2020:210-219.
[14] AHMED Shams Forruque, ALAM MD Sakib Bin, HASSAN Maruf, et al. Deep learning modelling techniques: current progress, applications, advantages, and challenges[J]. Artificial Intelligence Review, 2023, 56(11):13521-13617.
[15] PHAN Huyen Trang, NGUYEN Ngoc Thanh, HWANG Dosam. Fake news detection: a survey of graph neural network methods[J]. Applied Soft Computing, 2023, 139:110235.
[16] LIANG Ke, LIU Yue, ZHOU Sihang, et al. Knowledge graph contrastive learning based on relation-symmetrical structure[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(1):226-238.
[17] WANG Xiao, CHENGuangyao, QIAN Guangwu, et al. Large-scale multi-modal pre-trained models: a comprehensive survey[J]. Machine Intelligence Research, 2023, 20(4):447-482.
[18] WANG Jingxiong, ZHANG Qi, SHI Fobo, et al. Knowledge graph embedding model with attention-based high-low level features interaction convolutional network[J]. Information Processing & Management, 2023, 60(4):103350.
[19] HU Qinghua, YU Daren, XIE Zongxia. Neighborhood classifiers[J]. Expert Systems with Applications, 2008, 34(2):866-876.
[20] SEWWANDI M A N D, LI Yuefeng, ZHANG Jinglan. A class-specific feature selection and classification approach using neighborhood rough set and K-nearest neighbor theories[J]. Applied Soft Computing, 2023, 143:110366.
[21] ZHUO Jianhuan, ZHU Qiannan, YUE Yinliang, et al. A neighborhood-attention fine-grained entity typing for knowledge graph completion[C] //Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. New York:Association for Computing Machinery, 2022:1525-1533.
[22] LI Yu, HU Bojie, LIU Jian, et al. A neighborhood re-ranking model with relation constraint for knowledge graph completion[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31:411-425.
[23] PENG Zhihan, YU Hong. Knowledge graph representation learning for link prediction with three-way decisions[C] //International Joint Conference on Rough Sets. Bratislava: Springer, 2021:266-278.
[24] DUAN Jiangli, WANG Guoyin, XIN Hu, et al. Mining multigranularity decision rules of concept cognition for knowledge graphs based on three-way decision[J]. Information Processing & Management, 2023, 60(4):103365.
[1] 国栋凯,张钦然,李小南,易黄建. 基于新型阴影集的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2025, 60(1): 74-82.
[2] 桂梁,徐遥,何世柱,张元哲,刘康,赵军. 基于动态邻居选择的知识图谱事实错误检测方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 76-84.
[3] 黎超,廖薇. 基于医疗知识驱动的中文疾病文本分类模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 122-130.
[4] 范敏,秦琴,李金海. 基于三支因果力的邻域推荐算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 12-22.
[5] 朱金,付玉,管文瑞,王平心. 基于自然最近邻的样本扰动三支聚类[J]. 《山东大学学报(理学版)》, 2024, 59(5): 45-51.
[6] 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89.
[7] 牛泽群,李晓戈,强成宇,韩伟,姚怡,刘洋. 基于图注意力神经网络的实体消歧方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 71-80, 94.
[8] 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104.
[9] 那宇嘉,谢珺,杨海洋,续欣莹. 融合上下文的知识图谱补全方法[J]. 《山东大学学报(理学版)》, 2023, 58(9): 71-80.
[10] 胡成祥,张莉,黄晓玲,王汇彬. 面向属性变化的动态邻域粗糙集知识更新方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 37-51.
[11] 王君宇,杨亚锋,薛静轩,李丽红. 可拓序贯三支决策模型及应用[J]. 《山东大学学报(理学版)》, 2023, 58(7): 67-79.
[12] 方宇,郑胡宇,曹雪梅. 三支过采样的不平衡数据分类方法[J]. 《山东大学学报(理学版)》, 2023, 58(12): 41-51.
[13] 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 《山东大学学报(理学版)》, 2023, 58(1): 59-66.
[14] 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45.
[15] 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 《山东大学学报(理学版)》, 2022, 57(8): 68-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!