《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (7): 94-103.doi: 10.6040/j.issn.1671-9352.4.2024.534
• • 上一篇
钱文彬,彭嘉豪,蔡星星*
QIAN Wenbin, PENG Jiahao, CAI Xingxing*
摘要: 提出了一种基于邻域粒度与三支决策理论的知识表示学习方法,该方法采用2阶段的框架式增强算法,第1阶段通过知识表示学习方法拟合知识图谱中的节点与关系,映射其中蕴含的语义信息进入低维向量空间;第2阶段,通过划分低维向量表示的邻域粒度,捕捉和利用语义信息中的潜藏相似关系,并辅以三支决策对邻域粒度所挖掘的相似语义信息进行精准的划分,再将所挖掘出的潜藏信息对模型进行重训练,提升知识表示学习方法的准确性与鲁棒性。本文选定5种经典的知识表示学习模型,并在4个公开的大型知识图谱数据集上进行实验,通过实验结果验证了本方法的有效性。
中图分类号:
[1] JIShaoxiong, PAN Shirui, CAMBRIA Erik, et al. A survey on knowledge graphs:representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):494-514. [2] 张天成,田雪,孙相会,等. 知识图谱嵌入技术研究综述[J]. 软件学报,2023,34(1):277-311. ZHANGTiancheng, TIAN Xue, SUN Xianghui, et al. Overview on knowledge graph embedding technology research[J]. Journal of Software, 2023, 34(1):277-311. [3] 王萌,王昊奋,李博涵,等. 新一代知识图谱关键技术综述[J]. 计算机研究与发展,2022,59(9):1947-1965. WANG Meng, WANG Haofen, LI Bohan, et al. Survey on key technologies of new generation knowledge graph[J]. Journal of Computer Research and Development, 2022, 59(9):1947-1965 [4] DING Juanjuan, ZHANG Chao, LI Deyu, et al. Three-way decisions in generalized intuitionistic fuzzy environments: survey and challenges[J]. Artificial Intelligence Review, 2024, 57(2):38. [5] YIN Longjun, ZHANG Qinghua, ZHAO Fan, et al. Superiority of three-way decisions from the perspective of probability[J]. Artificial Intelligence Review, 2023, 56(2):1263-1295. [6] YAO Yiyu. Three-way decision: an interpretation of rules in rough set theory[C] //Rough Sets and Knowledge Technology: 4th International Conference,Gold Coast: Springer, 2009:642-649. [7] CAO Jiahang, FANG Jinyuan, MENG Zaiqiao, et al. Knowledge graph embedding: a survey from the perspective of representation spaces[J]. ACM Computing Surveys, 2024, 56(6):1-42. [8] YANG Jing, YANG Laurence T, WANGHao, et al. Representation learning for knowledge fusion and reasoning in cyber-physical-social systems: survey and perspectives[J]. Information Fusion, 2023, 90:59-73. [9] ANTELMI Alessia, CORDASCO Gennaro, POLATO Mirko, et al. A survey on hypergraph representation learning[J]. ACM Computing Surveys, 2023, 56(1):1-38. [10] WANG Zhen, ZHANG Jianwen, FENG Jianlin, et al. Knowledge graph embedding by translating on hyperplanes[C] //Proceedings of the AAAI conference on artificial intelligence. Quebec City: AAAI, 2014:1112-1119. [11] ZHONG Lingfeng, WU Jia, LI Qian, et al. A comprehensive survey on automatic knowledge graph construction[J]. ACM Computing Surveys, 2023, 56(4): 94:1-94. [12] PENG Ciyuan, XIA Feng, NASERIPARSA Mehdi, et al. Knowledge graphs: opportunities and challenges[J]. Artificial Intelligence Review, 2023, 56(11):13071-13102. [13] HONG Qinghang, BAI Yushi, TAO Guanyu, et al. Improving knowledge graph embedding with numerical edge features: a pRotatE approach[C] //Proceedings of the 2020 IEEE International Conference on Data Mining, Los Alamitos: IEEE, 2020:210-219. [14] AHMED Shams Forruque, ALAM MD Sakib Bin, HASSAN Maruf, et al. Deep learning modelling techniques: current progress, applications, advantages, and challenges[J]. Artificial Intelligence Review, 2023, 56(11):13521-13617. [15] PHAN Huyen Trang, NGUYEN Ngoc Thanh, HWANG Dosam. Fake news detection: a survey of graph neural network methods[J]. Applied Soft Computing, 2023, 139:110235. [16] LIANG Ke, LIU Yue, ZHOU Sihang, et al. Knowledge graph contrastive learning based on relation-symmetrical structure[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(1):226-238. [17] WANG Xiao, CHENGuangyao, QIAN Guangwu, et al. Large-scale multi-modal pre-trained models: a comprehensive survey[J]. Machine Intelligence Research, 2023, 20(4):447-482. [18] WANG Jingxiong, ZHANG Qi, SHI Fobo, et al. Knowledge graph embedding model with attention-based high-low level features interaction convolutional network[J]. Information Processing & Management, 2023, 60(4):103350. [19] HU Qinghua, YU Daren, XIE Zongxia. Neighborhood classifiers[J]. Expert Systems with Applications, 2008, 34(2):866-876. [20] SEWWANDI M A N D, LI Yuefeng, ZHANG Jinglan. A class-specific feature selection and classification approach using neighborhood rough set and K-nearest neighbor theories[J]. Applied Soft Computing, 2023, 143:110366. [21] ZHUO Jianhuan, ZHU Qiannan, YUE Yinliang, et al. A neighborhood-attention fine-grained entity typing for knowledge graph completion[C] //Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. New York:Association for Computing Machinery, 2022:1525-1533. [22] LI Yu, HU Bojie, LIU Jian, et al. A neighborhood re-ranking model with relation constraint for knowledge graph completion[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31:411-425. [23] PENG Zhihan, YU Hong. Knowledge graph representation learning for link prediction with three-way decisions[C] //International Joint Conference on Rough Sets. Bratislava: Springer, 2021:266-278. [24] DUAN Jiangli, WANG Guoyin, XIN Hu, et al. Mining multigranularity decision rules of concept cognition for knowledge graphs based on three-way decision[J]. Information Processing & Management, 2023, 60(4):103365. |
[1] | 国栋凯,张钦然,李小南,易黄建. 基于新型阴影集的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2025, 60(1): 74-82. |
[2] | 桂梁,徐遥,何世柱,张元哲,刘康,赵军. 基于动态邻居选择的知识图谱事实错误检测方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 76-84. |
[3] | 黎超,廖薇. 基于医疗知识驱动的中文疾病文本分类模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 122-130. |
[4] | 范敏,秦琴,李金海. 基于三支因果力的邻域推荐算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 12-22. |
[5] | 朱金,付玉,管文瑞,王平心. 基于自然最近邻的样本扰动三支聚类[J]. 《山东大学学报(理学版)》, 2024, 59(5): 45-51. |
[6] | 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89. |
[7] | 牛泽群,李晓戈,强成宇,韩伟,姚怡,刘洋. 基于图注意力神经网络的实体消歧方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 71-80, 94. |
[8] | 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104. |
[9] | 那宇嘉,谢珺,杨海洋,续欣莹. 融合上下文的知识图谱补全方法[J]. 《山东大学学报(理学版)》, 2023, 58(9): 71-80. |
[10] | 胡成祥,张莉,黄晓玲,王汇彬. 面向属性变化的动态邻域粗糙集知识更新方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 37-51. |
[11] | 王君宇,杨亚锋,薛静轩,李丽红. 可拓序贯三支决策模型及应用[J]. 《山东大学学报(理学版)》, 2023, 58(7): 67-79. |
[12] | 方宇,郑胡宇,曹雪梅. 三支过采样的不平衡数据分类方法[J]. 《山东大学学报(理学版)》, 2023, 58(12): 41-51. |
[13] | 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 《山东大学学报(理学版)》, 2023, 58(1): 59-66. |
[14] | 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45. |
[15] | 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 《山东大学学报(理学版)》, 2022, 57(8): 68-76. |
|