您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 36-48.doi: 10.6040/j.issn.1671-9352.0.2025.088

• • 上一篇    

基于一般重叠函数的模糊数学形态学边缘检测方法

王军涛1,黄强2   

  1. 1.西安石油大学理学院, 陕西 西安 710065;2.西安石油大学计算机学院, 陕西 西安 710065
  • 发布日期:2026-01-15
  • 作者简介:王军涛(1987— ),男,副教授,硕士生导师,博士,研究方向为序代数、非经典逻辑及不确定性推理. E-mail:wjt@xsyu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12471442);陕西省自然科学基础研究计划资助项目(2025JC-YBQN-092,2025JC-YBMS-034);陕西省教育厅青年高校创新团队科研项目(23JP132);西安石油大学研究生创新项目(YCX2413141)

Fuzzy mathematical morphology edge detection method derived from general overlap functions

  1. 1. School of Science, Xian Shiyou University, Xian 710065, Shaanxi, China;
    2. School of Computer Science, Xian Shiyou University, Xian 710065, Shaanxi, China
  • Published:2026-01-15

摘要: 基于一般重叠函数与其诱导的剩余蕴涵分别构造了模糊膨胀和模糊腐蚀两类模糊数学形态学算子,并研究模糊膨胀、模糊腐蚀算子的代数性质,将模糊聚类方法与模糊膨胀、模糊腐蚀算子结合,提出一种新的模糊数学形态学边缘检测方法,利用该算法对多个灰度图像边缘检测。相较于三角模和经典合取算子的边缘检测方法,文中提出的边缘检测方法适用范围更广,实验结果表明,在尽可能提取到完整图像边缘的前提下,本文边缘检测方法能够有效减少噪声引入率。

关键词: 一般重叠函数, 剩余蕴涵, 模糊数学形态学, 图像边缘检测和提取

Abstract: Two types of fuzzy mathematical morphology operators are constructed based on the general overlap function, and the corresponding fuzzy mathematical morphological edge detection methods are proposed, which are successfully applied to image edge extraction. Based on the general overlap functions and their corresponding residuated implications, two types of fuzzy mathematical morphological operators, including fuzzy erosion and fuzzy dilation, are constructed, respectively, and their related algebraic properties are studied. A new fuzzy mathematical morphological edge detection method is proposed by combining the fuzzy clustering method with the fuzzy erosion and fuzzy dilation. This edge detection method is wider than that of the edge detection method of the triangular norms and the classical conjuction, and the experimental results show that the noise introduction rate can be effectively reduced under the premise of extracting the edge of the complete image as much as possible.

Key words: general overlap function, residuated implication, fuzzy mathematical morphology, image edge detection and extraction

中图分类号: 

  • TP391
[1] BUSTINCE H, FERNANDEZ J, MESIAR R, et al. Overlap functions[J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72(3/4):1488-1499.
[2] JURIO A, BUSTINCE H, PAGOLA M, et al. Some properties of overlap and grouping functions and their application to image thresholding[J]. Fuzzy Sets and Systems, 2013, 229:69-90.
[3] HÁJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Springer Science & Business Media, 2013:27-56.
[4] DROSSOS C A. Generalized t-norm structures[J]. Fuzzy Sets and Systems, 1999, 104(1):53-59.
[5] DE MIGUEL L, GÓMEZ D, RODRÍGUEZ J T, et al. General overlap functions[J]. Fuzzy Sets and Systems, 2019, 372:81-96.
[6] BACZYNSKI M, BELIAKOV G, SOLA HB, et al. Advances in fuzzy implication functions[M]. Berlinb: Springer, 2013:1-30.
[7] YAGER R R. On some new classes of implication operators and their role in approximate reasoning[J]. Information Sciences, 2004, 167(1):193-216.
[8] RUAN D, KERRE E E. Fuzzy implication operators and generalized fuzzy method of cases[J]. Fuzzy Sets and Systems, 1993, 54(1): 23-37.
[9] SERRA J. Image analysis and mathematical morphology[M]. London: Academic Press, 1982:591-597.
[10] MATHERON G. Random sets and integral geometry[M]. New York: Wiley, 1975:277-278.
[11] BLOCH I, HEIJMANS H, RONSE C. Mathematical morphology[M]. Dordrecht: Springer, 2007:857-944.
[12] 石炜,刘松,杨锦春,等. 列车滚子轴承表面缺陷图像的边缘提取[J]. 机械设计与制造,2024,405(11):179-183. SHI Wei, LIU Song, YANG Jinchun, et al. Edge extraction of surface defect image of train roller bearing[J]. Machinery Design & Manufacture, 2024, 405(11):179-183.
[13] SINHA D, DOUGHERTY E R. Fuzzy mathematical morphology[J]. Journal of Visual Communication and Image Representation, 1992, 3:286-302.
[14] DE BAETS B, KERRE E E, GUPTA M. The fundamentals of fuzzy mathematical morphology part 1: basic concepts[J]. International Journal of General Systems, 1995, 23:155-171.
[15] IZAKIAN H, ABRAHAM A. Fuzzy C-means and fuzzy swarm for fuzzy clustering problem[J]. Expert Systems with Applications, 2011, 38(3):1835-1838.
[16] NACHTEGAEL M, KERRE E E. Classical and fuzzy approaches towards mathematical morphology[M] //KERRE E E, NACHTEGAEL M. Fuzzy Techniques in Image Processing. Berlin: Springer, 2000:3-57.
[17] GONZÁLEZ-HIDALGO M, MASSANET S. A fuzzy mathematical morphology based on discrete t-norms: fundamentals and applications to image processing[J]. Soft Computing, 2014, 18:2297-2311.
[18] ZHANG Xiaohong, LI Mengyuan, LIU Hui. Overlap functions-based fuzzy mathematical morphological operators and their applications in image edge extraction[J]. Fractal and Fractional, 2023, 465(7):1-23.
[19] ZHANG Xiaohong, LI Mengyuan, SHAO Songtao, et al.(I,O)-fuzzy rough sets based on overlap functions with their applications to feature selection and image edge extraction[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(4):1796-1809.
[20] LI Mengyuan, ZHANG Xiaohong, SHANG Jiaoyan, et al. General quasi overlap functions and fuzzy neighborhood systems-based fuzzy rough sets with their applications[J]. IEEE Transactions on Knowledge and Date Engineering, 2024, 36(12):8349-8361.
[1] 梁霞,郭洁. 基于在线评论的线上教学平台选择方法[J]. 《山东大学学报(理学版)》, 2024, 59(9): 108-118.
[2] 黎超,廖薇. 基于医疗知识驱动的中文疾病文本分类模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 122-130.
[3] 纪杰,孙承杰,单丽莉,尚伯乐,林磊. 基于提示学习的电信网络诈骗案件分类方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 113-121.
[4] 罗奇,苟刚. 基于聚类和群组归一化的多模态对话情绪识别[J]. 《山东大学学报(理学版)》, 2024, 59(7): 105-112.
[5] 赵峰叙,王健,林原,林鸿飞. 面向排序学习的概率分布优化模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 95-104.
[6] 黄兴宇,赵明宇,吕子钰. 面向图神经网络表征学习的类别知识探针[J]. 《山东大学学报(理学版)》, 2024, 59(7): 85-94.
[7] 桂梁,徐遥,何世柱,张元哲,刘康,赵军. 基于动态邻居选择的知识图谱事实错误检测方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 76-84.
[8] 咸宁,范意兴,廉涛,郭嘉丰. 融合多重特征的噪声网络对齐方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 64-75.
[9] 孙承杰,李宗蔚,单丽莉,林磊. 一种基于核心论元的篇章级事件抽取方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 53-63.
[10] 刘沛羽,姚博文,高泽峰,赵鑫. 基于矩阵乘积算符表示的序列化推荐模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 44-52, 104.
[11] 邵伟,朱高宇,于雷,郭嘉丰. 高维数据的降维与检索算法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 27-43.
[12] 杨纪元,马沐阳,任鹏杰,陈竹敏,任昭春,辛鑫,蔡飞,马军. 基于自监督的预训练在推荐系统中的研究[J]. 《山东大学学报(理学版)》, 2024, 59(7): 1-26.
[13] 陈海粟,廖佳纯,姚思诚. 政府开放数据中个人信息披露识别与统计方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 95-106.
[14] 温欣,李德玉. 基于属性加权的ML-KNN方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 107-117.
[15] 曾雪强,孙雨,刘烨,万中英,左家莉,王明文. 基于情感分布的emoji嵌入式表示[J]. 《山东大学学报(理学版)》, 2024, 59(3): 81-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!