您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 127-140.doi: 10.6040/j.issn.1671-9352.0.2025.109

• • 上一篇    

墨鱼黑色素纳米球pH响应机制及其对毛鳞片光保护的影响

朱元宇1,赵洪德2,赵芷晴1,王新昊1,王继乾1,王栋1*   

  1. 1.中国石油大学(华东)化学化工学院, 山东 青岛 266580;2.中华人民共和国黄岛海关, 山东 青岛 266000
  • 发布日期:2025-10-17
  • 通讯作者: 王栋(1984— ),男,副教授,博士,研究方向为多肽自组装,生物表面活性剂在油田化学中的应用. E-mail:wangdong@upc.edu.cn
  • 作者简介:朱元宇(2001— ),男,硕士研究生,研究方向为多肽自组装,生物表面活性剂在油田化学中的应用. E-mail:1264526541@qq.com*通信作者:王栋(1984— ),男,副教授,博士,研究方向为多肽自组装,生物表面活性剂在油田化学中的应用. E-mail:wangdong@upc.edu.cn
  • 基金资助:
    山东省自然科学基金面上项目(ZR2020MB039)

pH-responsive mechanism of cuttlefish melanin nanospheres and their effect on photoprotection of hair scales

ZHU Yuanyu1, ZHAO Hongde2, ZHAO Zhiqing1, WANG Xinhao1, WANG Jiqian1, WANG Dong1*   

  1. 1. College of Chemistry and Chemical Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. Huangdao Customs of the Peoples Republic of China, Qingdao 266000, Shandong, China
  • Published:2025-10-17

摘要: 本研究针对墨鱼黑色素在化妆品应用中存在的结构异质性及难溶性难题,创新性地提出pH调控介导的结构重塑策略,系统揭示黑色素分散特性与功能演变之间的构效关系。通过多尺度结构表征(透射电子显微镜(TEM)/扫描电子显微镜(SEM))发现,碱性处理可诱导黑色素发生显著结构重组,其天然致密球形颗粒(中性pH)转化为具有高表面活性的纤维-无定形复合结构,该重构显著提升其分散度和界面结合能力。在此基础上,以人发纤维为模型构建光损伤防护体系,通过FT-IR光谱证实经碱处理的黑色素可通过氢键网络与角蛋白形成稳定复合物,紫外-可见光谱进一步显示其对UVA/UVB波段吸收效率提升。尤其值得关注的是,共聚焦显微分析表明改性黑色素能在毛鳞片间隙形成连续光防护膜,较天然黑色素的离散分布模式,其紫外线反射率降低。该研究为开发基于海洋生物质的高效光防护化妆品提供理论依据与技术路径。

关键词: 墨鱼黑色素, pH敏感, 光防护

Abstract: The inherent structural heterogeneity and pronounced insolubility of natural cuttlefish melanin, a biomacromolecule, pose critical bottlenecks in material characterization and functional regulation, severely limiting its advanced applications in cosmetics. To overcome these technical limitations, this study innovatively employed a pH-modulated structural remodeling strategy to systematically elucidate the structure-function relationships governing its solubility evolution and functional enhancement. Multi-scale structural analyzed(SEM/TEM)reveal that alkaline treatment induced a phase transition from native compact spherical particles(neutral pH)to fibrous-amorphous composited with elevated surface activity. This structural reconfiguration enhanced aqueous solubility and interfacial binding capacity compared to native melanin. Using human hair fibers as a photodamage protection model, FT-IR spectroscopy confirmed stable keratin-melanin complex formation through reconstructed hydrogen-bond networks following alkaline treatment. UV-Vis spectroscopy demonstrated an improvement in UVA/UVB absorption efficiency(280-400 nm wavelength range). Notably, confocal microscopy revealed that modified melanin forms continuous photoprotective films within cuticle interstices, achieved lower UV reflectivity compared to the discrete distribution pattern of native melanin. This research established a dual theoretical-technical framework for developing marine biomass-derived advanced photoprotective cosmeceuticals, offering insights into biomacromolecule functionalization through supramolecular restructuring.

Key words: cuttlefish melanin, pH sensitivity, light protection

中图分类号: 

  • O648
[1] AYU SHAZWANI Z, RABETA M S. Enzymatic hydrolysis as an approach toproduce alternative protein from cephalopods ink powder:a short review[J]. Food Research, 2020, 4(5):1383-1390.
[2] PYO J, JU K Y, LEE J K. Artificial pheomelanin nanoparticles and their photo-sensitization properties[J]. Journal of Photochemistry and Photobiology B:Biology, 2016, 160:330-335.
[3] XIE J W, LI H Y, CHE H X, et al. Extraction, physicochemicalcharacterisation, and bioactive properties of ink melanin from cuttlefish(Sepia esculenta)[J]. International Journal of Food Science & Technology, 2021, 56(7):3627-3640.
[4] LIN Z J, LIU L Z, WANG W, et al. The role and mechanism of polydopamine and cuttlefish ink melanin carrying copper ion nanoparticles in antibacterial properties and promoting wound healing[J]. Biomaterials Science, 2021, 9(17):5951-5964.
[5] POTA G, ZANFARDINO A, DI NAPOLI M, et al. Bioinspired antibacterial PVA/melanin-TiO2 hybrid nanoparticles: the role of poly-vinyl-alcohol on their self-assembly and biocide activity[J]. Colloids and Surfaces B: Biointerfaces, 2021, 202:111671.
[6] MENTER J M, PATTA A M, HOLLINS T D, et al. Photoprotection of mammalian acid-soluble collagen by cuttlefish sepia melaninin vitro[J]. Photochemistry and Photobiology, 1998, 68(4):532-537.
[7] BETTINGER C J, BRUGGEMAN J P, MISRA A, et al. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering[J]. Biomaterials, 2009, 30(17):3050-3057.
[8] PAULIN J V, BATAGIN-NETO A, NAYDENOV B, et al. High-field/high-frequency EPR spectroscopy on synthetic melanin: on the origin of carbon-centered radicals[J]. Materials Advances, 2021, 2(19):6297-6305.
[9] CUZZUBBO S, CARPENTIER A F. Applications of melanin and melanin-like nanoparticles in cancer therapy: a review of recent advances[J]. Cancers, 2021, 13(6):1463.
[10] GALVÁN I, WAKAMATSU K. Color measurement of the animal integument predicts the content of specific melanin forms[J]. RSC Advances, 2016, 6(82):79135-79142.
[11] SUGUMARAN M. Comparative biochemistry ofeumelanogenesis and the protective roles of phenoloxidase and melanin in insects[J]. Pigment Cell Research, 2002, 15(1):2-9.
[12] DMELLO S, FINLAY G, BAGULEY B, et al. Signaling pathways in melanogenesis[J]. International Journal of Molecular Sciences, 2016, 17(7):1144.
[13] KUNDU R V, MHLABA J M, RANGEL S M, et al. The convergence theory for vitiligo: a reappraisal[J]. Experimental Dermatology, 2019, 28(6):647-655.
[14] SLOMINSKI A, WORTSMAN J, PLONKA PM, et al. Hair follicle pigmentation[J]. Journal of Investigative Dermatology, 2005, 124(1):13-21.
[15] SLOMINSKI A, TOBIN D J, SHIBAHARA S, et al. Melanin pigmentation in mammalian skin and its hormonal regulation[J]. Physiological Reviews, 2004, 84(4):1155-1228.
[16] VAHIDZADEH E, KALRA A P, SHANKAR K. Melanin-based electronics: From proton conductors to photovoltaics and beyond[J]. Biosensors & Bioelectronics, 2018, 122:127-139.
[17] SOLANO F. Photoprotection and skin pigmentation: melanin-relatedmolecules and some other new agents obtained from natural sources[J]. Molecules, 2020, 25(7):1537.
[18] GHATTAVI K, HOMAEI A, KAMRANI E, et al. Melanin pigment derived from marine organisms and its industrial applications[J]. Dyes and Pigments, 2022, 201:110214.
[19] CAVALLINI C, VITIELLO G, ADINOLFI B, et al. Melanin and melanin-like hybrid materials in regenerative medicine[J]. Nanomaterials, 2020, 10(8):1518.
[20] KIM D J, JU K Y, LEE J K. The synthetic melanin nanoparticles having an excellent binding capacity of heavy metal ions[J]. Bulletin of the Korean Chemical Society, 2012, 33(11):3788-3792.
[21] PEZZELLA A, DISCHIA M, NAPOLITANO A, et al. An integrated approach to the structure of Sepia melanin. Evidence for a high proportion of degraded 5, 6-dihydroxyindole-2-carboxylic acid units in the pigment backbone[J]. Tetrahedron, 1997, 53(24):8281-8286.
[22] XUE C H, LI H G, GUO X J, et al. Superhydrophobic anti-icing coatings with self-deicing property using melanin nanoparticles from cuttlefish juice[J]. Chemical Engineering Journal, 2021, 424:130553.
[23] ESSID I, AROUSSIA H, SOUFI E, et al. Improving quality of smoked sardine fillets by soaking in cuttlefish ink[J]. Food Science and Technology, 2022, 42:e65020.
[24] SONG C H, WU X Y, WANG Y, et al. Cuttlefish-inspired photo-responsive antibacterial microparticles with natural melanin nanoparticles spray[J]. Small, 2024, 20(19):2310444.
[25] MORITA T, MATSUURA T, IZAWA H, et al. Melanin upcycling:creation of polymeric materials from melanin decomposition products[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(18):7115-7125.
[26] GAETA M, BARCELLONA M, PURRELLO R, et al. Hybrid Porphyrin/DOPA-melanin film as self-assembled material and smart device for dye-pollutant removal in water[J]. Chemical Engineering Journal, 2022, 433:133262.
[27] SAJJAN S S. Properties and functions of melanin pigment from klebsiella sp. GSK[J]. Korean Journal of Microbiology and Biotechnology, 2013, 41(1):60-69.
[28] GUO X, CHEN S G, HU Y Q, et al. Preparation of water-soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity[J]. Journal of Food Science and Technology, 2014, 51(12):3680-3690.
[29] WATT A A R, BOTHMA J P, MEREDITH P. The supramolecular structure of melanin[J]. Soft Matter, 2009, 5(19):3754-3760.
[30] MBONYIRYIVUZE A, NURU Z Y, DIOPNGOM B, et al. Morphological and chemical composition characterization of commercial sepia melanin[J]. American Journal of Nanomaterials, 2015, 3(1):22-27.
[31] JAKUBIAK P, LACK F, THUN J, et al. Influence of melanin characteristics on drug binding properties[J]. Molecular Pharmaceutics, 2019, 16(6):2549-2556.
[32] CHEN J L, ZHANG Y Y, WU F G, et al. Cellulose nanofiber/melanin hybrid aerogel supported phase change materials with improved photothermal conversion efficiency and superior energy storage density[J]. Cellulose, 2021, 28(15):9739-9750.
[33] ADHYARU B B, AKHMEDOV N G, KATRITZKY A R, et al. Solid-state cross-polarization magic angle spinning 13C and 15N NMR characterization of Sepia melanin, Sepia melanin free acid and human hair melanin in comparison with several model compounds[J]. Magnetic Resonance in Chemistry, 2003, 41(6):466-474.
[34] BINSI P K, MUHAMED ASHRAF P, PARVATHY U, et al. Photo-protective effect of cuttlefish ink melanin on human hair[J]. Journal of Applied Polymer Science, 2022, 139(7):51631.
[35] CENTENO S A, SHAMIR J. Surface enhanced Raman scattering(SERS)and FTIR characterization of the sepia melanin pigment used in works of art[J]. Journal of Molecular Structure, 2008, 873(1/2/3):149-159.
[36] PAKDEL E, XIE W J, WANG J F, et al. Superhydrophobic natural melanin-coated cotton with excellent UV protection and personal thermal management functionality[J]. Chemical Engineering Journal, 2022, 433:133688.
[37] JALMI P, BODKE P, WAHIDULLAH S, et al. The fungus Gliocephalotrichum simplex as a source of abundant, extracellular melanin for biotechnological applications[J]. World Journal of Microbiology and Biotechnology, 2012, 28(2):505-512.
[38] WANG Y, WANG X F, LI T, et al. Effects of melanin on optical behavior of polymer:from natural pigment to materials applications[J]. ACS Applied Materials & Interfaces, 2018, 10(15):13100-13106.
[1] 高娟,王晓琳,HOFFMANN Heinz,郝京诚. 离子液体凝胶[J]. 《山东大学学报(理学版)》, 2019, 54(1): 1-18.
[2] 张耀军,万刚强,颜磊,马庆昌,李东祥,赵继宽. 种子生长法制备ZnO纳米棒组装结构[J]. 山东大学学报(理学版), 2016, 51(1): 14-19.
[3] 赵国平,陈国辉 . CTAB/正丁醇/正庚烷/水微乳体系稳定性研究[J]. J4, 2007, 42(11): 19-22 .
[4] 周松,宁华龙,陈相燕,冯玉娇,徐文龙. 自供电水凝胶传感器及其应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 79-104.
[5] 韩心昕,李梦琦,张培育,崔基炜. 生物型表面活性剂的合成与应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 13-22.
[6] 马文超,杜娜,侯万国. 液体均相混合物的表面张力及吸附行为[J]. 《山东大学学报(理学版)》, 2025, 60(10): 105-116.
[7] 刘欣怡,李洁龄,王安河,李琦,白硕. 丝素蛋白增强的肽自组装水凝胶的制备及其在肿瘤类器官构建中的应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 117-126.
[8] 冯圣玉,谌梓煦,王灯旭. 聚硅氧烷基荧光材料[J]. 《山东大学学报(理学版)》, 2021, 56(10): 99-112.
[9] 李广乐,闫学海. 生物分子凝聚体的界面张力[J]. 《山东大学学报(理学版)》, 2025, 60(10): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!