您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 13-22.doi: 10.6040/j.issn.1671-9352.0.2025.168

• • 上一篇    

生物型表面活性剂的合成与应用

韩心昕,李梦琦,张培育*,崔基炜*   

  1. 山东大学胶体与界面化学教育部重点实验室, 山东 济南 250100
  • 发布日期:2025-10-17
  • 通讯作者: 张培育(1987— ),男,副教授,硕士生导师,博士,研究方向为界面组装材料的制备及生物应用. E-mail:pyzhang@sdu.edu.cn;崔基炜(1982— ),男,教授,博士生导师,博士,研究方向为胶体材料组装及在生物医学中的应用. E-mail:jwcui@sdu.edu.cn
  • 作者简介:韩心昕(2002— ),女,硕士研究生,研究方向为凝胶泡沫的制备及生物应用. E-mail:xxhan@mail.sdu.edu.cn*通信作者:张培育(1987— ),男,副教授,硕士生导师,博士,研究方向为界面组装材料的制备及生物应用. E-mail:pyzhang@sdu.edu.cn崔基炜(1982— ),男,教授,博士生导师,博士,研究方向为胶体材料组装及在生物医学中的应用. E-mail:jwcui@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(22072075,22172089);山东大学本科教育教学改革研究项目(2024Y120)

Synthesis and application of biosurfactants

HAN Xinxin, LI Mengqi, ZHANG Peiyu*, CUI Jiwei*   

  1. Key Laboratory of Collid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
  • Published:2025-10-17

摘要: 在化学与生物技术交叉领域,生物型表面活性剂凭借其生物可降解性、低毒性和环境友好性等优势,成为替代传统化学表面活性剂的关键材料。这类微生物、动植物源天然分子因其独特的结构特征,展现出良好的物理化学性质。本文对其分类进行系统地梳理,并重点对比合成工艺的技术特点。同时结合最新研究进展,探讨生物型表面活性剂在石油采集、食品医药、环境修复等领域的应用前景,为推进其技术创新提供理论参考。

关键词: 生物型表面活性剂, 合成, 应用

Abstract: In the intersection of chemistry and biotechnology, biosurfactants have emerged as key candidates to replace traditional chemical surfactants due to their inherent advantages, including biodegradability, low toxicity and environmental friendliness. Derived from microorganisms, plants, and animals, these natural molecules possess unique structural characteristics that confer superior physicochemical properties. This paper systematically reviews the classification of biosurfactants and focuses on a comparative analysis of their manufacturing processes. Furthermore, integrating recent research advances, it discusses the application prospects of biosurfactants in fields such as petroleum extraction, food and medicine, and environmental remediation. The insights presented herein aims to provide a theoretical foundation for advancing biosurfactant technology innovation.

Key words: biosurfactant, synthesis, application

中图分类号: 

  • O648
[1] JAHAN R, BODRATTI A M, TSIANOU M, et al. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications[J]. Advances in Colloid and Interface Science, 2020, 275:102061.
[2] KUGAJI M, RAY S K, PARVATIKAR P, et al. Biosurfactants: a review of different strategies for economical production, their applications and recent advancements[J]. Advances in Colloid and Interface Science, 2025, 337:103389.
[3] CAROLIN C F, KUMAR P S, NGUEAGNI P T. A review on new aspects of lipopeptide biosurfactant: types, production, properties and its application in the bioremediation process[J]. Journal of Hazardous Materials, 2021, 407:124827.
[4] GAUDIN T, LU H L, FAYET G, et al. Impact of the chemical structure on amphiphilic properties of sugar-based surfactants: a literature overview[J]. Advances in Colloid and Interface Science, 2019, 270:87-100.
[5] MCCLURE C D, SCHILLER N L. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages[J]. Journal of Leukocyte Biology, 1992, 51(2):97-102.
[6] ANDRÄ J, RADEMANN J, HOWE J, et al. Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia(Pseudomonas)plantarii: immune cell stimulation and biophysical characterization[J]. Biological Chemistry, 2006, 387(3):301-310.
[7] REZANKA T, SIRISTOVA L, SIGLER K. Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus[J]. Extremophiles, 2011, 15(6):697.
[8] FRANZETTI A, GANDOLFI I, BESTETTI G, et al. Production and applications of trehalose lipid biosurfactants[J]. European Journal of Lipid Science and Technology, 2010, 112(6):617-627.
[9] GAO P K, LI G Q, LI Y S, et al. An exogenous surfactant-producing Bacillus subtilis facilitates indigenous microbial enhanced oil recovery[J]. Frontiers in Microbiology, 2016, 7:186.
[10] LI J F, LI H F, LIANG S K, et al. Characterization of sophorolipids from the yeast Starmerella bombicola O-13-1 using waste fried oil and cane molasses as substrates[J]. Desalination and Water Treatment, 2018, 119:267-275.
[11] TAKAHASHI M, MORITA T, WADA K, et al. Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using Starmerella bombicola NBRC 10243[J]. Journal of Oleo Science, 2011, 60(5):267-273.
[12] DAVEREY A, PAKSHIRAJAN K, SUMALATHA S. Sophorolipids production by Candida bombicola using dairy industry wastewater[J]. Clean Technologies and Environmental Policy, 2011, 13(3):481-488.
[13] MORITA T, KONISHI M, FUKUOKA T, et al. Efficient production of di-and tri-acylated mannosylerythritol lipids as glycolipid biosurfactants by Pseudozyma parantarctica JCM 11752T[J]. Journal of Oleo Science, 2008, 57(10):557-565.
[14] MORITA T, OGURA Y, TAKASHIMA M, et al. Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids[J]. Journal of Bioscience and Bioengineering, 2011, 112(2):137-144.
[15] KONISHI M, NAGAHAMA T, FUKUOKA T, et al. Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62[J]. Journal of Bioscience and Bioengineering, 2011, 111(6):702-705.
[16] FARIA N T, MARQUES S, FONSECA C, et al. Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma Antarctica PYCC 5048T[J]. Enzyme and Microbial Technology, 2015, 71:58-65.
[17] MORITA T, FUKUOKA T, IMURA T, et al. Mannosylerythritol lipids: production and applications[J]. Journal of Oleo Science, 2015, 64(2):133-141.
[18] SANDRIN C, PEYPOUX F, MICHEL G. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis[J]. Biotechnology and Applied Biochemistry, 1990, 12(4):370-375.
[19] BOUCHARD-ROCHETTE M, MACHRAFI Y, COSSUS L, et al. Bacillus pumilus PTB180 and Bacillus subtilis PTB185: production of lipopeptides, antifungal activity, and biocontrol ability against botrytis cinerea[J]. Biological Control, 2022, 170:104925.
[20] SLIVINSKI C T, MALLMANN E, DE ARAÚJO J M, et al. Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent[J]. Process Biochemistry, 2012, 47(12):1848-1855.
[21] STANSLY P G, SCHLOSSER M E. Studies on polymyxin: isolation and identification of Bacillus polymyxa and differentiation of polymyxin from certain known antibiotics[J]. Journal of Bacteriology, 1947, 54(5):549-556.
[22] SRIRAM M I, GAYATHIRI S, GNANASELVI U, et al. Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation[J]. Bioresource Technology, 2011, 102(19):9291-9295.
[23] BEZZA F A, CHIRWA E M N. Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2[J]. Biochemical Engineering Journal, 2015, 101:168-178.
[24] WANG F H, GUO Z H, YANG Z X, et al. Utilization of soybean oil waste for a high-level production of ceramide by a novel phospholipase C as an environmentally friendly process[J]. Journal of Agricultural and Food Chemistry, 2022, 70(10):3228-3238.
[25] BODOUR A A, GUERRERO-BARAJAS C, JIORLE B V, et al. Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11[J]. Applied and Environmental Microbiology, 2004, 70(1):114-120.
[26] JOHRI A K, YALPANI M, KAPLAN D L. Incorporation of fluorinated fatty acids into emulsan by Acinetobacter calcoaceticus RAG-1[J]. Biochemical Engineering Journal, 2003, 16(2):175-181.
[27] KAPLAN N, ROSENBERG E. Exopolysaccharide distribution of and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413[J]. Applied and Environmental Microbiology, 1982, 44(6):1335-1341.
[28] ROSENBERG E, RUBINOVITZ C, GOTTLIEB A, et al. Production of biodispersan by Acinetobacter calcoaceticus A2[J]. Applied and Environmental Microbiology, 1988, 54(2):317-322.
[29] ANDREW M, JAYARAMAN G. Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14[J]. Preparative Biochemistry & Biotechnology, 2025, 55(1):112-130.
[30] RAMANI K, JAIN S C, MANDAL A B, et al. Microbial induced lipoprotein biosurfactant from slaughterhouse lipid waste and its application to the removal of metal ions from aqueous solution[J]. Colloids and Surfaces B:Biointerfaces, 2012, 97:254-263.
[31] CAMPOS J M, STAMFORD T L M, SARUBBO L A. Characterization and application of a biosurfactant isolated from Candida utilis in salad dressings[J]. Biodegradation, 2019, 30(4):313-324.
[32] COHEN R, EXEROWA D. Surface forces and properties of foam films from rhamnolipid biosurfactants[J]. Advances in Colloid and Interface Science, 2007, 134:24-34.
[33] BAI L, MCCLEMENTS D J. Formation and stabilization of nanoemulsions using biosurfactants: rhamnolipids[J]. Journal of Colloid and Interface Science, 2016, 479:71-79.
[34] GARCIA M T, RIBOSA I, KOWALCZYK I, et al. Biodegradability and aquatic toxicity of new cleavable betainate cationic oligomeric surfactants[J]. Journal of Hazardous Materials, 2019, 371:108-114.
[35] SONBHADRA S, MISHRA A, PANDEY L M. Natures marvels: exploring the multifaceted applications of surfactin and rhamnolipids[J]. Langmuir, 2025, 41(6):3731-3743.
[36] ASNACHINDA E, KHAMPAENG C, SUTTHINON P, et al. Enhancement of styrene adsolubilization and solubilization by rhamnolipid biosurfactant-linker mixtures onto an aluminum oxide surface[J]. Journal of Surfactants and Detergents, 2015, 18(3):439-444.
[37] BACCILE N, POIRIER A, PEREZ J, et al. Self-assembly of rhamnolipid bioamphiphiles: understanding the structure-property relationship using small-angle X-ray scattering[J]. Langmuir, 2023, 39(27):9273-9289.
[38] LONG X W, HE N, HE Y K, et al. Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier[J]. Bioresource Technology, 2017, 241:200-206.
[39] LÓPEZ-VALENCIA L, MOYA M, ESCUDERO B, et al. Bacterial lipopolysaccharide forms aggregates with apolipoproteins in male and female rat brains after ethanol binges[J]. Journal of Lipid Research, 2024, 65(3):100509.
[40] ZHANG W K, LIU S S, KONG L, et al. Lipopolysaccharide-induced persistent inflammation ameliorates fat accumulation by promoting adipose browning in vitro and in vivo[J]. International Journal of Biological Macromolecules, 2023, 252:126511.
[41] AL-BAHRY S N, AL-WAHAIBI Y M, ELSHAFIE A E, et al. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery[J]. International Biodeterioration & Biodegradation, 2013, 81:141-146.
[42] PIEDRAHÍTA-AGUIRRE C A, ALEGRE R M. Production of lipopeptide iturin a using novel strain Bacillus iso 1 in a packed bed bioreactor[J]. Biocatalysis and Agricultural Biotechnology, 2014, 3(2):154-158.
[43] FEMINA CAROLIN C, SENTHIL KUMAR P, CHITRA B, et al. Stimulation of Bacillus sp. by lipopeptide biosurfactant for the degradation of aromatic amine 4-Chloroaniline[J]. Journal of Hazardous Materials, 2021, 415:125716.
[44] WU T F, LIU C M, HU X T. Enzymatic synthesis, characterization and properties of the protein-polysaccharide conjugate: a review[J]. Food Chemistry, 2022, 372:131332.
[45] ZHOU Y, PETROVA S P, EDGAR K J. Chemical synthesis of polysaccharide-protein and polysaccharide-peptide conjugates: a review[J]. Carbohydrate Polymers, 2021, 274:118662.
[46] THAKUR V, BAGHMARE P, VERMA A, et al. Recent progress in microbial biosurfactants production strategies:applications, technological bottlenecks, and future outlook[J]. Bioresource Technology, 2024, 408:131211.
[47] BANAT I M, FRANZETTI A, GANDOLFI I, et al. Microbial biosurfactants production, applications and future potential[J]. Applied Microbiology and Biotechnology, 2010, 87(2):427-444.
[48] LIU Y H, LIN S, ZHANG X Q, et al. A novel approach for improving the yield of Bacillus subtilis transglutaminase in heterologous strains[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(8):1227-1235.
[49] ISASCHAR-OVDAT S, FISHMAN A. Crosslinking of food proteins mediated by oxidative enzymes: a review[J]. Trends in Food Science & Technology, 2018, 72:134-143.
[50] BUHORI A, LEE J, CHA M J, et al. Synthesis of biosurfactants from polyethylene waste via an integrated chemical and biological process[J]. Journal of Environmental Chemical Engineering, 2024, 12(5):113322.
[51] PALA M, CASTELEIN M G, DEWAELE C, et al. Tuning the antimicrobial activity of microbial glycolipid biosurfactants through chemical modification[J]. Frontiers in Bioengineering and Biotechnology, 2024, 12:1347185.
[52] SHI Y B, ZHANG L H, ZHANG M, et al. A CRISPR-Cas9 system-mediated genetic disruption and multi-fragment assembly in Starmerella bombicola[J]. ACS Synthetic Biology, 2022, 11(4):1497-1509.
[53] MUNEESWARI R, IYAPPAN S, SWATHI K V, et al. Biocatalytic lipoprotein bioamphiphile induced treatment of recalcitrant hydrocarbons in petroleum refinery oil sludge through transposon technology[J]. Journal of Hazardous Materials, 2022, 431:128520.
[54] BEZZA F A, CHIRWA E M N. The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons(PAHs)-contaminated soil[J]. Chemical Engineering Journal, 2017, 309:563-576.
[55] KHONDEE N, SUKSOMBOON B, KHUN-ARWUT N, et al. Scaled-up production and recovery of lipopeptide biosurfactant and its application for washing petroleum-contaminated drill cuttings[J]. Journal of Environmental Chemical Engineering, 2024, 12(6):114605.
[56] LI Z Z, LIN J Z, WANG W D, et al. Effect of rhamnolipid amidation on biosurfactant adsorption loss and oil-washing efficiency[J]. Langmuir, 2022, 38(8):2435-2444.
[57] CHENG W M, LIU J D, FENG Y, et al. Study on the cooperation mechanism of urea-hydrolysis bacteria and biosurfactant bacteria for dust suppression[J]. Chemical Engineering Journal, 2024, 480:148008.
[58] TANG J, HE J G, XIN X D, et al. Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment[J]. Chemical Engineering Journal, 2018, 334:2579-2592.
[59] PORTET-KOLTALO F, AMMAMI M T, BENAMAR A, et al. Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants[J]. Journal of Hazardous Materials, 2013, 261:593-601.
[60] PEREZ-AMENEIRO M, VECINO X, CRUZ J M, et al. Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite[J]. Carbohydrate Polymers, 2015, 131:186-196.
[61] REN H Y, HOU D Y, ZHOU S Y, et al. Study on the effect of petroleum components on the elution of oily sludge by a compound biosurfactant[J]. Langmuir, 2022, 38(6):2026-2037.
[62] LIU J, KANG R, TANG D L. Lipopolysaccharide delivery systems in innate immunity[J]. Trends in Immunology, 2024, 45(4):274-287.
[63] OHADI M, FOROOTANFAR H, DEHGHANNOUDEH N, et al. The role of surfactants and biosurfactants in the wound healing process:a review[J]. Journal of Wound Care, 2023, 32:39-46.
[64] WANG X, LIU G Q, PU X Y, et al. Combating cisplatin-resistant lung cancer using a coiled-coil lipopeptides modified membrane fused drug delivery system[J]. Journal of Controlled Release, 2025, 379:45-58.
[65] ZHANG Z J, ZHANG X, XU X H, et al. Virus-inspired mimics based on dendritic lipopeptides for efficient tumor-specific infection and systemic drug delivery[J]. Advanced Functional Materials, 2015, 25(33):5250-5260.
[66] DE LA FUENTE-HERRERUELA D, MONNAPPA A K, MUÑOZ-ÚBEDA M, et al. Lipid-peptide bioconjugation through pyridyl disulfide reaction chemistry and its application in cell targeting and drug delivery[J]. Journal of Nanobiotechnology, 2019, 17(1):77.
[67] ADAK A, CASTELLETTO V, HAMLEY I W, et al. Self-assembly and wound healing activity of biomimetic cycloalkane-based lipopeptides[J]. ACS Applied Materials & Interfaces, 2024, 16(43):58417-58426.
[68] GAO B H, RAO C Y, LEI X M, et al. Comprehensive insights into yeast mannoproteins: structural heterogeneity, winemaking, food processing, and medicine food homology[J]. Food Research International, 2025, 202:115719.
[69] DOKOUHAKI M, HUNG A, KASAPIS S, et al. Hydrophobins and chaplins:novel bio-surfactants for food dispersions a review[J]. Trends in Food Science & Technology, 2021, 111:378-387.
[70] VILLANUEVA M E, BAR L, REDONDO-MORATA L, et al. Spontaneous nanotube formation of an asymmetric glycolipid[J]. Journal of Colloid and Interface Science, 2024, 671:410-422.
[71] BAE S H, YOO S, LEE J S, et al. A lipid nanoparticle platform incorporating trehalose glycolipid for exceptional mRNA vaccine safety[J]. Bioactive Materials, 2024, 38:486-498.
[1] 陈光,吕江涛,邱学良,丁利兵,蔡宜辰,陈悦,刘正学,王禄山. 阿拉伯木聚糖关键制备工艺及其应用[J]. 《山东大学学报(理学版)》, 2024, 59(11): 20-30.
[2] 陈淑珍,史开泉,李守伟. 微信息的嵌入生成及其智能隐藏-还原[J]. 《山东大学学报(理学版)》, 2023, 58(12): 1-9.
[3] 方宇,郑胡宇,曹雪梅. 三支过采样的不平衡数据分类方法[J]. 《山东大学学报(理学版)》, 2023, 58(12): 41-51.
[4] 李守伟,史开泉. 逆分离模糊集合((-overA)F,(-overA)(-overF))与模糊信息安全获取[J]. 《山东大学学报(理学版)》, 2022, 57(9): 1-14.
[5] 史开泉,李守伟. 分离模糊集合(A(-overF),AF)与模糊信息智能融合[J]. 《山东大学学报(理学版)》, 2022, 57(7): 1-13.
[6] 陈淑珍,李守伟,史开泉. 信息融合-分离与隐性属性的显性特征[J]. 《山东大学学报(理学版)》, 2022, 57(11): 1-9.
[7] 何钰星,阿布都卡的·吾甫. B2-型量子群的不可约模的Gröbner-Shirshov对[J]. 《山东大学学报(理学版)》, 2020, 55(8): 28-37.
[8] 古丽沙旦木·玉奴斯,阿布都卡的·吾甫. 广义逆的Gröbner-Shirshov基方法[J]. 《山东大学学报(理学版)》, 2020, 55(4): 54-57.
[9] 张茜,苏烨,秦静. 集合成员关系判定的安全多方计算协议[J]. 《山东大学学报(理学版)》, 2020, 55(4): 118-126.
[10] 李颖,胡俊. 基于分布式消息驱动的分层可信密码服务框架[J]. 《山东大学学报(理学版)》, 2020, 55(3): 19-27.
[11] 徐凤生,于秀清,张立华. 信息智能融合与它的P-增广矩阵推理生成[J]. 《山东大学学报(理学版)》, 2019, 54(9): 22-28.
[12] 木娜依木·迪里夏提,阿布都卡的·吾甫. A型退化仿射Hecke代数的Gröbner-Shirshov基[J]. 《山东大学学报(理学版)》, 2019, 54(2): 106-110.
[13] 孟丽,王倩,柴树,朱维群. 1,3,5-均三嗪三醇与二乙烯三胺的催化胺化反应[J]. 山东大学学报(理学版), 2018, 53(3): 88-94.
[14] 张耀军,万刚强,颜磊,马庆昌,李东祥,赵继宽. 种子生长法制备ZnO纳米棒组装结构[J]. 山东大学学报(理学版), 2016, 51(1): 14-19.
[15] 陈雯, 姚静荪, 杨雪洁. 一个奇摄动四阶微分方程的非线性混合边值问题[J]. 山东大学学报(理学版), 2015, 50(03): 67-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!