您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 105-116.doi: 10.6040/j.issn.1671-9352.0.2025.140

• • 上一篇    

液体均相混合物的表面张力及吸附行为

马文超1,杜娜1,侯万国1,2 *   

  1. 1.山东大学胶体与界面化学教育部重点实验室, 山东 济南 250100;2.国家胶体材料工程技术研究中心, 山东 济南 250100
  • 发布日期:2025-10-17
  • 通讯作者: 侯万国(1962— ),男,教授,博士,研究方向为胶体与界面化学. E-mail:wghou@sdu.edu.cn
  • 作者简介:马文超(1999— ),女,博士研究生,研究方向为胶体与界面化学. E-mail:mawenchao@mail.sdu.edu.cn*通信作者:侯万国(1962— ),男,教授,博士,研究方向为胶体与界面化学. E-mail:wghou@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(22272088)

Surface tension and adsorption behavior of liquid homogeneous mixtures

MA Wenchao1, DU Na1, HOU Wanguo1,2*   

  1. 1. Key Laboratory of Colloid &
    Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China;
    2. National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, Shandong, China
  • Published:2025-10-17

摘要: 液体混合物的表面张力和吸附已得到广泛研究,但仍缺乏普适的热力学预测模型。近期,我们提出包含吸附平衡常数(K)和平均表面聚集数(n)的“表面聚集吸附(SAA)”模型,可由二元体系的模型参数预测多元体系的表面张力和组成,但其普适性(特别是对四元及以上体系的适用性)还有待验证。本文选取异丙醇、水、正癸烷、乙醇和正丁醇形成的三元、四元和五元体系,测定其在不同体相组成时的表面张力,与模型预测结果相比较,二者具有良好的符合度,证实SAA模型的合理性和普适性。基于SAA模型,研究液体混合物组分间表面吸附的相互影响。对给定液体混合物,外加组分将降低原体系中n值最大组分的相对吸附趋势,而增强n值最小组分的相对吸附趋势。本工作加深了对液体混合物表面吸附行为的认识。

关键词: 液体混合物, 表面张力, 表面吸附, 表面聚集, 热力学模型

Abstract: The surface tension and adsorption of liquid mixtures have been widely studied, but there is still a lack of universal thermodynamic prediction models. Recently, we proposed a predictive model, called the “surface aggregation adsorption(SAA)” model, which has two parameters with definite physical meaning, i.e., the adsorption equilibrium constant(K)and the average surface aggregation number(n). The SAA model can predict the surface tension and composition of multicomponent liquid mixtures using the model parameters of corresponding binary systems. However, its applicability needs to be examined, especially for the systems with four or more components. In the current work, the surface tensions of ternary, quaternary, and quinary mixtures composed of iso-propanol(iPrOH), water, n-decane(DA), ethanol(EtOH), and n-butanol(nBuOH)were determined under different bulk compositions. A good agreement between the model prediction and experimental results was observed, confirming the rationality and universality of the SAA model. Based on the SAA model, the surface adsorption behavior of liquid mixtures was investigated. For a given liquid mixture, adding another liquid will weaken the relative adsorption tendency of the component with the highest n value in the original system, while enhance that of the component with the lowest n value. This work has deepened our understanding of the surface adsorption behavior of liquid mixtures.

Key words: liquid mixture, surface tension, surface adsorption, surface aggregation, thermodynamic model

中图分类号: 

  • O648
[1] KAPTAY G. The chemical(not mechanical)paradigm of thermodynamics of colloid and interface science[J]. Advances in Colloid and Interface Science, 2018, 256:163-192.
[2] STEPHAN S, HASSE H. Enrichment at vapour-liquid interfaces of mixtures: establishing a link between nanoscopic and macroscopic properties[J]. International Reviews in Physical Chemistry, 2020, 39(3):319-349.
[3] VEGH A, KOROZS J, KAPTAY G. Extension of the Gibbs-Duhem equation to the partial molar surface thermodynamic properties of solutions[J]. Langmuir, 2022, 38(16):4906-4912.
[4] HERNÁNDEZ A, TAHERY R. Modeling of surface tension and phase equilibria for water+amine mixtures from 298.15 to 323.15 K using different thermodynamic models[J]. Journal of Solution Chemistry, 2022, 51(1):31-57.
[5] KLEINHEINS J, SHARDT N, EL HABER M, et al. Surface tension models for binary aqueous solutions: a review and intercomparison[J]. Physical Chemistry Chemical Physics, 2023, 25(16):11055-11074.
[6] SANTOS M S C S, REIS J C R. Thermodynamic evaluation of molar surface area and thickness of water+ethanol mixtures[J]. Journal of Molecular Liquids, 2018, 255:419-428.
[7] HYDE A E, OHSHIO M, NGUYEN C V, et al. Surface properties of the ethanol/water mixture: thickness and composition[J]. Journal of Molecular Liquids, 2019, 290:111005.
[8] PIÑEIRO Á, BROCOS P, AMIGO A, et al. Extended Langmuir isotherm for binary liquid mixtures[J]. Langmuir, 2001, 17(14):4261-4266.
[9] QI W S, YU X C, DU N, et al. General adsorption model to describe sigmoidal surface tension isotherms of binary liquid mixtures[J]. Langmuir, 2023, 39(1):507-518.
[10] 亓文帅,侯万国. 多元液体混合物表面张力和组成预测模型[J]. 中国科学:化学,2023, 53(7):1236-1246. QI Wenshuai, HOU Wanguo. A model for predicting the surface tension and composition of multicomponent liquid mixtures[J]. Scientia Sinica Chimica, 2023, 53(7):1236-1246.
[11] 于先超,亓文帅,邓全花,等. 水-短链醇二元溶液的表面吸附[J]. 高等学校化学学报,2023,44(11):181-189. YU Xianchao, QI Wenshuai, DENG Quanhua, et al. Surface adsorption of water-alcohol binary solutions[J]. Chemical Journal of Chinese Universities, 2023, 44(11):181-189.
[12] MA W C, DU N, HOU W G. Predicting surface tension and surface composition of multicomponent liquid mixtures.(I)Ternary mixtures of isopropanol, water, and n-decane or n-tetradecane[J]. Chemical Physics, 2025, 595:112718.
[13] GIBBS J W. On the equilibrium of heterogeneous substances[J]. Transactions of the Connecticut Academy of Arts and Sciences, 3:108-248.
[14] BUTLER J A V. The thermodynamics of the surfaces of solutions[J]. Proceedings of the Royal Society of London Series A, 1932, 135(827):348-375.
[15] EBERHART J G. The surface tension of binary liquid mixtures1[J]. The Journal of Physical Chemistry, 1966, 70(4):1183-1186.
[16] ROSS S, MORRISON I D. Thermodynamics of adsorbed solutes[J]. Colloids and Surfaces, 1983, 7(2):121-134.
[17] PHAN C M. Affinity of amphiphilic molecules to air/water surface[J]. ACS Omega, 2023, 8(50):47928-47937.
[18] TENG K, YAO Y F, CHEN F W. Studies on the surface adsorption of binary molten salts[J]. Langmuir, 2024, 40(2):1203-1212.
[19] BROCOS P, GRACIA-FADRIQUE J, AMIGO A, et al. Application of the extended Langmuir model to surface tension data of binary liquid mixtures[J]. Fluid Phase Equilibria, 2005, 237(1/2):140-151.
[20] SANTOS M S C S, REIS J C R. Shape and curvature of surface tension isotherms for liquid mixtures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518:208-217.
[21] PHAN C M. The surface tension and interfacial composition of water/ethanol mixture[J]. Journal of Molecular Liquids, 2021, 342:117505.
[22] KAPTAY G. Improved derivation of the butler equations for surface tension of solutions[J]. Langmuir, 2019, 35(33):10987-10992.
[23] BERMUDEZ-SALGUERO C, GRACIA-FADRIQUE J. Gibbs excess and the calculation of the absolute surface composition of liquid binary mixtures[J]. The Journal of Physical Chemistry B, 2015, 119(17):5598-5608.
[24] KOROZS J, KAPTAY G. Derivation of the Butler equation from the requirement of the minimum Gibbs energy of a solution phase, taking into account its surface area[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533:296-301.
[25] BROCOS P, PIÑEIRO Á, AMIGO A, et al. A proposal for the estimation of binary mixture activity coefficients from surface tension measurements throughout the entire concentration range[J]. Fluid Phase Equilibria, 2007, 260(2):343-353.
[26] SANTOS M S C S, REIS J C R. Activity coefficients in the surface phase of liquid mixtures[J]. ChemPhysChem, 2015, 16(2):470-475.
[27] SANTOS M S C S, REIS J C R. Partial molar surface areas in liquid mixtures. Theory and evaluation in aqueous ethanol[J]. Journal of Molecular Liquids, 2019, 273:525-535.
[28] LAAKSONEN A, KULMALA M. An explicit cluster model for binary nuclei in water-alcohol systems[J]. The Journal of Chemical Physics, 1991, 95(9):6745-6748.
[29] CONNORS K A, WRIGHT J L. Dependence of surface tension on composition of binary aqueous-organic solutions[J]. Analytical Chemistry, 1989, 61(3):194-198.
[30] VÁZQUEZ G, ALVAREZ E, NAVAZA J M. Surface tension of alcohol+water from 20 to 50 ℃[J]. Journal of Chemical and Engineering Data, 1995, 40(3):611-614.
[31] FERNÁNDEZ L, PÉREZ E, ORTEGA J, et al. Measurements of the excess properties and vapor-liquid equilibria at 101.32 kPa for mixtures of ethyl ethanoate+alkanes(from C5 to C10)[J]. Journal of Chemical & Engineering Data, 2010, 55(12):5519-5533.
[32] JASPER J, KERR E, GREGORICH F. The orthobaric surface tensions and thermodynamic properties of the liquid surfaces of the n-alkanes C5 to C18 [J]. Journal of the American Chemical Society, 1953, 75(24):6363.
[1] 高娟,王晓琳,HOFFMANN Heinz,郝京诚. 离子液体凝胶[J]. 《山东大学学报(理学版)》, 2019, 54(1): 1-18.
[2] 张耀军,万刚强,颜磊,马庆昌,李东祥,赵继宽. 种子生长法制备ZnO纳米棒组装结构[J]. 山东大学学报(理学版), 2016, 51(1): 14-19.
[3] 赵国平,陈国辉 . CTAB/正丁醇/正庚烷/水微乳体系稳定性研究[J]. J4, 2007, 42(11): 19-22 .
[4] 周松,宁华龙,陈相燕,冯玉娇,徐文龙. 自供电水凝胶传感器及其应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 79-104.
[5] 韩心昕,李梦琦,张培育,崔基炜. 生物型表面活性剂的合成与应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 13-22.
[6] 冯圣玉,谌梓煦,王灯旭. 聚硅氧烷基荧光材料[J]. 《山东大学学报(理学版)》, 2021, 56(10): 99-112.
[7] 李广乐,闫学海. 生物分子凝聚体的界面张力[J]. 《山东大学学报(理学版)》, 2025, 60(10): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!