《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 105-116.doi: 10.6040/j.issn.1671-9352.0.2025.140
• • 上一篇
马文超1,杜娜1,侯万国1,2 *
MA Wenchao1, DU Na1, HOU Wanguo1,2*
摘要: 液体混合物的表面张力和吸附已得到广泛研究,但仍缺乏普适的热力学预测模型。近期,我们提出包含吸附平衡常数(K)和平均表面聚集数(n)的“表面聚集吸附(SAA)”模型,可由二元体系的模型参数预测多元体系的表面张力和组成,但其普适性(特别是对四元及以上体系的适用性)还有待验证。本文选取异丙醇、水、正癸烷、乙醇和正丁醇形成的三元、四元和五元体系,测定其在不同体相组成时的表面张力,与模型预测结果相比较,二者具有良好的符合度,证实SAA模型的合理性和普适性。基于SAA模型,研究液体混合物组分间表面吸附的相互影响。对给定液体混合物,外加组分将降低原体系中n值最大组分的相对吸附趋势,而增强n值最小组分的相对吸附趋势。本工作加深了对液体混合物表面吸附行为的认识。
中图分类号:
[1] KAPTAY G. The chemical(not mechanical)paradigm of thermodynamics of colloid and interface science[J]. Advances in Colloid and Interface Science, 2018, 256:163-192. [2] STEPHAN S, HASSE H. Enrichment at vapour-liquid interfaces of mixtures: establishing a link between nanoscopic and macroscopic properties[J]. International Reviews in Physical Chemistry, 2020, 39(3):319-349. [3] VEGH A, KOROZS J, KAPTAY G. Extension of the Gibbs-Duhem equation to the partial molar surface thermodynamic properties of solutions[J]. Langmuir, 2022, 38(16):4906-4912. [4] HERNÁNDEZ A, TAHERY R. Modeling of surface tension and phase equilibria for water+amine mixtures from 298.15 to 323.15 K using different thermodynamic models[J]. Journal of Solution Chemistry, 2022, 51(1):31-57. [5] KLEINHEINS J, SHARDT N, EL HABER M, et al. Surface tension models for binary aqueous solutions: a review and intercomparison[J]. Physical Chemistry Chemical Physics, 2023, 25(16):11055-11074. [6] SANTOS M S C S, REIS J C R. Thermodynamic evaluation of molar surface area and thickness of water+ethanol mixtures[J]. Journal of Molecular Liquids, 2018, 255:419-428. [7] HYDE A E, OHSHIO M, NGUYEN C V, et al. Surface properties of the ethanol/water mixture: thickness and composition[J]. Journal of Molecular Liquids, 2019, 290:111005. [8] PIÑEIRO Á, BROCOS P, AMIGO A, et al. Extended Langmuir isotherm for binary liquid mixtures[J]. Langmuir, 2001, 17(14):4261-4266. [9] QI W S, YU X C, DU N, et al. General adsorption model to describe sigmoidal surface tension isotherms of binary liquid mixtures[J]. Langmuir, 2023, 39(1):507-518. [10] 亓文帅,侯万国. 多元液体混合物表面张力和组成预测模型[J]. 中国科学:化学,2023, 53(7):1236-1246. QI Wenshuai, HOU Wanguo. A model for predicting the surface tension and composition of multicomponent liquid mixtures[J]. Scientia Sinica Chimica, 2023, 53(7):1236-1246. [11] 于先超,亓文帅,邓全花,等. 水-短链醇二元溶液的表面吸附[J]. 高等学校化学学报,2023,44(11):181-189. YU Xianchao, QI Wenshuai, DENG Quanhua, et al. Surface adsorption of water-alcohol binary solutions[J]. Chemical Journal of Chinese Universities, 2023, 44(11):181-189. [12] MA W C, DU N, HOU W G. Predicting surface tension and surface composition of multicomponent liquid mixtures.(I)Ternary mixtures of isopropanol, water, and n-decane or n-tetradecane[J]. Chemical Physics, 2025, 595:112718. [13] GIBBS J W. On the equilibrium of heterogeneous substances[J]. Transactions of the Connecticut Academy of Arts and Sciences, 3:108-248. [14] BUTLER J A V. The thermodynamics of the surfaces of solutions[J]. Proceedings of the Royal Society of London Series A, 1932, 135(827):348-375. [15] EBERHART J G. The surface tension of binary liquid mixtures1[J]. The Journal of Physical Chemistry, 1966, 70(4):1183-1186. [16] ROSS S, MORRISON I D. Thermodynamics of adsorbed solutes[J]. Colloids and Surfaces, 1983, 7(2):121-134. [17] PHAN C M. Affinity of amphiphilic molecules to air/water surface[J]. ACS Omega, 2023, 8(50):47928-47937. [18] TENG K, YAO Y F, CHEN F W. Studies on the surface adsorption of binary molten salts[J]. Langmuir, 2024, 40(2):1203-1212. [19] BROCOS P, GRACIA-FADRIQUE J, AMIGO A, et al. Application of the extended Langmuir model to surface tension data of binary liquid mixtures[J]. Fluid Phase Equilibria, 2005, 237(1/2):140-151. [20] SANTOS M S C S, REIS J C R. Shape and curvature of surface tension isotherms for liquid mixtures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518:208-217. [21] PHAN C M. The surface tension and interfacial composition of water/ethanol mixture[J]. Journal of Molecular Liquids, 2021, 342:117505. [22] KAPTAY G. Improved derivation of the butler equations for surface tension of solutions[J]. Langmuir, 2019, 35(33):10987-10992. [23] BERMUDEZ-SALGUERO C, GRACIA-FADRIQUE J. Gibbs excess and the calculation of the absolute surface composition of liquid binary mixtures[J]. The Journal of Physical Chemistry B, 2015, 119(17):5598-5608. [24] KOROZS J, KAPTAY G. Derivation of the Butler equation from the requirement of the minimum Gibbs energy of a solution phase, taking into account its surface area[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533:296-301. [25] BROCOS P, PIÑEIRO Á, AMIGO A, et al. A proposal for the estimation of binary mixture activity coefficients from surface tension measurements throughout the entire concentration range[J]. Fluid Phase Equilibria, 2007, 260(2):343-353. [26] SANTOS M S C S, REIS J C R. Activity coefficients in the surface phase of liquid mixtures[J]. ChemPhysChem, 2015, 16(2):470-475. [27] SANTOS M S C S, REIS J C R. Partial molar surface areas in liquid mixtures. Theory and evaluation in aqueous ethanol[J]. Journal of Molecular Liquids, 2019, 273:525-535. [28] LAAKSONEN A, KULMALA M. An explicit cluster model for binary nuclei in water-alcohol systems[J]. The Journal of Chemical Physics, 1991, 95(9):6745-6748. [29] CONNORS K A, WRIGHT J L. Dependence of surface tension on composition of binary aqueous-organic solutions[J]. Analytical Chemistry, 1989, 61(3):194-198. [30] VÁZQUEZ G, ALVAREZ E, NAVAZA J M. Surface tension of alcohol+water from 20 to 50 ℃[J]. Journal of Chemical and Engineering Data, 1995, 40(3):611-614. [31] FERNÁNDEZ L, PÉREZ E, ORTEGA J, et al. Measurements of the excess properties and vapor-liquid equilibria at 101.32 kPa for mixtures of ethyl ethanoate+alkanes(from C5 to C10)[J]. Journal of Chemical & Engineering Data, 2010, 55(12):5519-5533. [32] JASPER J, KERR E, GREGORICH F. The orthobaric surface tensions and thermodynamic properties of the liquid surfaces of the n-alkanes C5 to C18 [J]. Journal of the American Chemical Society, 1953, 75(24):6363. |
[1] | 高娟,王晓琳,HOFFMANN Heinz,郝京诚. 离子液体凝胶[J]. 《山东大学学报(理学版)》, 2019, 54(1): 1-18. |
[2] | 张耀军,万刚强,颜磊,马庆昌,李东祥,赵继宽. 种子生长法制备ZnO纳米棒组装结构[J]. 山东大学学报(理学版), 2016, 51(1): 14-19. |
[3] | 赵国平,陈国辉 . CTAB/正丁醇/正庚烷/水微乳体系稳定性研究[J]. J4, 2007, 42(11): 19-22 . |
[4] | 周松,宁华龙,陈相燕,冯玉娇,徐文龙. 自供电水凝胶传感器及其应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 79-104. |
[5] | 韩心昕,李梦琦,张培育,崔基炜. 生物型表面活性剂的合成与应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 13-22. |
[6] | 冯圣玉,谌梓煦,王灯旭. 聚硅氧烷基荧光材料[J]. 《山东大学学报(理学版)》, 2021, 56(10): 99-112. |
[7] | 李广乐,闫学海. 生物分子凝聚体的界面张力[J]. 《山东大学学报(理学版)》, 2025, 60(10): 1-12. |
|