您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (3): 49-57.doi: 10.6040/j.issn.1671-9352.4.2021.005

• • 上一篇    

区间集非交换剩余格〈∈,∈Q〉-广义fuzzy奇异滤子的构造与属性约简

罗俊丽1,乔希民2*,吴洪博3   

  1. 1.商洛学院数学与计算机应用学院, 陕西 商洛 726000;2.广州工商学院通识教育学院, 广东 佛山 510850;3.陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 发布日期:2022-03-15
  • 作者简介:罗俊丽(1970— ),女,副教授,研究方向为模糊代数、粗糙代数. E-mail:hnljlb@163.com*通信作者简介:乔希民(1960— ),男,教授,研究方向为粗糙集、非经典数理逻辑与格上拓扑学等. E-mail:qiaoximin@163.com
  • 基金资助:
    国家自然科学基金资助项目(61572016);陕西省自然科学基础研究计划项目(2013JM1023);陕西省教育厅科研计划项目(11JK0512);广州工商学院科研项目(KA202132)

Structure and attribute reduction on non-commutative residual lattices 〈∈,∈Q〉-generalized fuzzy singular filter of interval-set

LUO Jun-li1, QIAO Xi-min2*, WU Hong-bo3   

  1. 1. School of Mathematics and Computer Application, Shangluo College, Shangluo 726000, Shaanxi, China;
    2. Department of Genera Education, Guangzhou College of Technology and Business, Foshan 510850, Guangdong, China;
    3. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Published:2022-03-15

摘要: 基于区间集思想、滤子理论和广义奇异概念,引入了区间集非交换剩余格和区间集非交换剩余格广义奇异滤子的定义,提出了构造区间集非交换剩余格广义fuzzy奇异滤子与区间集非交换剩余格〈∈,∈Q〉-广义fuzzy奇异滤子的方法,并给出它们之间的递进式本质属性与区间集相对必要属性的关系,体现代数结构表达的多样性与相对独立性。

关键词: 区间集, 区间集非交换剩余格, 广义fuzzy奇异滤子, 〈∈,∈Q〉-广义fuzzy奇异滤子, 构造, 属性约简

Abstract: Based on the idea of interval-set, filter theory and generalized singular concept, the definitions of interval-set non-commutative residual lattices and interval-set non-commutative residual lattices generalized singular filters are introduced, the methods of constructing generalized fuzzy singular filters on interval-set non-commutative residual lattices and interval-set non-commutative residual lattices 〈∈,∈Q〉-generalized fuzzy singular filters are proposed, the relation between the essential attribute of the progressive form and the relative necessary attribute of interval-set is given, which embodies the diversity and relative independence of the algebraic structure.

Key words: interval-set, interval-set non-commutative residual lattices, generalized fuzzy singular filter, 〈∈,∈Q〉-generalized fuzzy singular filter, structure, attribute reduction

中图分类号: 

  • O141
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] 周红军. 概率计量逻辑及其应用[M]. 北京: 科学出版社, 2015. ZHOU Hongjun. Probabilistic econometric logic and its application[M]. Beijing: Science Press, 2015.
[3] 张小红, 折延宏. 模糊量词及其积分语义[M]. 北京: 科学出版社, 2017. ZHANG Xiaohong, ZHE Yanhong. Fuzzy logic and algebraic analysis[M]. Beijing: Science Press, 2008.
[4] 辛小龙, 王军涛, 杨将. 逻辑代数上的非概率测度[M]. 北京: 科学出版社, 2019. XIN Xiaolong, WANG Juntao, YANG Jiang. Non probabilistic measures in logic algebra[M]. Beijing: Science Press, 2019.
[5] PAWLAK Z. Rough sets[J]. Internationa Journal of Computer and Information Science, 1982, 11:341-356.
[6] 李小南, 祁建军, 孙秉珍, 等. 三支决策理论与方法[M]. 北京: 科学出版社, 2019. LI Xiaonan, QI Jianjun, SUN Bingzhen, et al. Theory and method of three-way decision[M]. Beijing: Science Press, 2019.
[7] YAO Yiyu. Interval sets and interval-set algebras[C] //Proceeding of the 8th IEEE International Conference on Cognitive informatics. Hong Kong: IEEE Computer Society, 2009: 307-314.
[8] 姚一豫. 区间集[M] //云模型与粒计算. 北京: 科学出版社, 2012: 74-93. YAO Yiyu. Interval sets[M] //Cloud Model and Granular Computing. Beijing: Science Press, 2012: 74-93.
[9] YAO Yiyu. Two views of theory of rough sets in finite universes[J]. International Journal of Approximation Rersoning, 1996, 15(4):291-317.
[10] 陈德刚, 徐伟华, 李金海, 等. 粒计算基础教程[M]. 北京: 科学出版社, 2019. CHEN Degang, XU Weihua, LI Jinhai, et al. Basic course of granular computing[M]. Beijing: Science Press, 2019.
[11] 徐伟华, 李金海, 魏玲, 等. 形式概念分析理论与应用[M]. 北京: 科学出版社, 2016: 69-88. XU Weihua, LI Jinhai, WEI Ling, et al. Theory and application of formal concept analysis[M]. Beijing: Science Press, 2016:69-88.
[12] 吴伟志, 米据生. 粗糙集的数学结构[M]. 北京: 科学出版社, 2019. WU Weizhi, MI Jvsheng. Mathematical structure of rough set[M]. Beijing: Science Press, 2019.
[13] 折延宏. 不确定推理的计量化模型及其粗糙集语义[M]. 北京: 科学出版社, 2016. SHE Yanhong. Quantitative model of uncertainty reasoning and its rough set semantics[M]. Beijing: Science Press, 2016.
[14] ABRUSCI V M, RUET P. Non-commutative logic I: the multiplicative frequent[J]. Annals of Pure and Applied Logic, 2000, 101(1):29-64.
[15] RUET P. Non-commutative logicⅡ: sequent calculus andphase semantics[J]. Mathematical Structures in Computer Science, 2000, 10(2): 277-312.
[16] HÁJEK P. Observations on non-commutative fuzzy Logic[J]. Soft Computing, 2003, 8(1):38-43.
[17] JENEI S,MONTAGNA F. A proof of standard completeness for non-commutative monoidal t-norm logic[J]. Neural Network World, 2003, 5(5):481-489.
[18] LEUSTEAR I. Non-commutative lukasiewitcz propositional logic[J]. Archive for Maehematical Logic, 2006, 45(1):191-213.
[19] PU P M, LIU Y M. Fuzzy topologyⅠ:neighborhood structure of a fuzzy point and Moore-Smith convergence[J]. Journal of Mathematical Analysis and Applications, 1980, 76(2):571-599.
[20] PU P M, LIU Y M. Fuzzy topologyⅡ: product and quotient spaces[J]. Journal of Mathematical Analysis and Applications, 1980, 77(2):20-37.
[21] BHAKAT S K, DAS P. Fuzzy subrings and ideals redefined[J]. Fuzzy Sets Systems, 1996, 81:383-393.
[22] LIAO Z H, CU H.(∈,∈∨q(λ,μ))-fuzzy normal subgroup[J]. Fuzzy Systems and Mathematics, 2006, 20(5):47-53.
[23] 王国俊. 非经典数理逻辑与近似推理[M]. 2版. 北京: 科学出版社, 2008. WANG Guojun. Nonclassical mathematical logic and approximate reasoning[M]. 2nd Edtion. Beijing: Science Press, 2008.
[24] 裴道武.基于三角模的模糊逻辑理论及其应用[M].北京:科学出版社,2013. PEI Daowu. Based on the triangle model of fuzzy logic theory and its application[M]. Beijing: Science Press, 2013.
[25] 郭庆春, 马建敏. 对偶区间集概念格上区间集协调集的判定方法[J]. 计算机科学, 2020, 47(3):98-102. GUO Qingchun, MA Jianmin. Judgment methods of interval-set consistent sets of dual interval-set concept lattices[J]. Computer Science, 2020, 47(3):98-102.
[26] 刘营营, 米据生, 梁美社, 等. 三支区间集概念格[J]. 山东大学学报(理学版), 2020, 55(3):70-80. LIU Yingying, MI Jusheng, LIANG Meishe, et al. Three-way interval-set concept lattice[J]. Journal of Shandong University(Natural Science), 2020, 55(3):70-80.
[27] 卢晶, 乔希民, 罗俊丽, 等. 区间集上非交换剩余格广义fuzzy奇异滤子的特征刻画[J].甘肃科学学报, 2019, 31(5):12-16+22. LU Jing, QIAO Ximin, LUO Junli, et al. Characterization of generalized fuzzy Filters on non-commutative residual lattices on the interval set[J]. Journal of Gansu Sciences, 2019, 31(5):12-16+22.
[28] 乔希民, 吴洪博. 区间集上非交换剩余格〈∈,∈Q〉-fuzzy滤子的特征刻画[J]. 吉林大学学报(理学版), 2015, 53(6):1127-1133. QIAO Ximin,WU Hongbo.〈∈,∈Q〉-fuzzy filter characterization of the non-commutative residual lattices on the interval sets[J]. Journal of Jilin University(Natural Science), 2015, 53(6):1127-1133.
[29] 乔希民, 吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-Fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2):102-107. QIAO Ximin, WU Hongbo.〈,(-overQ)〉-fuzzy filter and its characterization of the non-commutative residual lattices on the interval sets[J].Journal of Shandong University(Natural Science), 2016, 51(2):102-107.
[30] 乔希民, 吴洪博. 区间集上非交换剩余格〈∈,∈Q〉-fuzzyy滤子的构造[J]. 浙江大学学报(理学版), 2016, 43(2):127-133. QIAO Ximin, WU Hongbo.Structure of non-commutative residual lattice 〈∈,∈Q〉-fuzzy filter on interval sets[J]. Journal of Zhejiang University(Natural Science), 2016, 43(2):127-133.
[1] 张娇娇,张少谱,冯涛. 毕达哥拉斯模糊系统的优势关系及其约简[J]. 《山东大学学报(理学版)》, 2021, 56(3): 96-110.
[2] 刘营营,米据生,梁美社,李磊军. 三支区间集概念格[J]. 《山东大学学报(理学版)》, 2020, 55(3): 70-80.
[3] 常凡凡,马建敏. 基于关系矩阵的区间集粗糙近似[J]. 《山东大学学报(理学版)》, 2020, 55(3): 98-106.
[4] 韩双志,张楠,张中喜. 区间值决策系统的特定类β分布约简[J]. 《山东大学学报(理学版)》, 2020, 55(11): 66-77.
[5] 万青,马盈仓,魏玲. 基于多粒度的多源数据知识获取[J]. 《山东大学学报(理学版)》, 2020, 55(1): 41-50.
[6] 景运革,景罗希,王宝丽,程妮. 属性值和属性变化的增量属性约简算法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 62-68.
[7] 郑荔平,胡敏杰,杨红和,林耀进. 基于粗糙集的协同过滤算法研究[J]. 《山东大学学报(理学版)》, 2019, 54(2): 41-50.
[8] 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16.
[9] 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33.
[10] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
[11] 张晓,杨燕燕. 覆盖决策系统的规则提取和置信度保持的属性约简算法[J]. 《山东大学学报(理学版)》, 2018, 53(12): 120-126.
[12] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[13] 刘国涛,张燕平,徐晨初. 一种优化覆盖中心的三支决策模型[J]. 山东大学学报(理学版), 2017, 52(3): 105-110.
[14] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[15] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!