《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 26-35.doi: 10.6040/j.issn.1671-9352.8.2024.009
• • 上一篇
余雷1,孙懿2,华金铭2,李腊全3
YU Lei1, SUN Yi2, HUA Jinming2, LI Laquan3
摘要: 提出基于变量选择网络(variable selection networks, VSN)和门控残差网络(gated residual networks, GRN)相结合的深度神经网络(deep neural network, DNN)模型,用于预测重症监护室(intensive care unit, ICU)脓毒症患者30 d内的死亡风险,并对模型的可解释性进行深入分析。在重症医学数据库中利用随机森林算法筛选43个重要特征,利用本文提出的模型评估死亡风险,并采用移除再训练(remove and retrain, ROAR)方法选出一种最佳的可解释性方法对结果进行解释。测试结果显示,本文提出的模型的预测性能优于其他机器学习模型,受试者工作特征曲线面积(area under receiver operating characteristic curve, AUROC)为0.967。利用ROAR方法分析中,相关性分数逐层传播(layer-wise relevance propagation, LRP)方法的AUROC从0.967下降到0.828。利用LRP方法对本文提出的模型进行可解释性分析后,确定查尔森合并症评分为最重要的特征,同时器官衰竭评分、年龄、呼吸频率也对重症监护室脓毒症患者的死亡风险有较大影响。
中图分类号:
| [1] 邱海波,杜斌,刘大为,等. 全身炎症反应综合征与多器官功能障碍综合征的临床研究[J]. 中华外科杂志,1997,35(7):402-405. QIU Haibo, DU Bin, LIU Dawei, et al. Clinical study on systemic inflammatory response syndrome and multiple organ dysfunction syndrome [J]. Chinese Journal of Surgery, 1997, 35(7):402-405. [2] GAUER R, FORBES D, BOYER N. Sepsis:diagnosis and management[J]. American Family Physician, 2020, 101(7):409-418. [3] WANG Yuhe, SHAN Gao, LEI Hong, et al. Prognostic impact of blood urea nitrogen to albumin ratio on patients with sepsis: a retrospective cohort study[J]. Scientific Reports, 2023, 13(1):10013. [4] COX D R. Regression models and life-tables[J]. Journal of the Royal Statistical Society(Series B: Methodological), 1972, 34(2):187-220. [5] DIAS A, GOMEZ V C, VIOLA L R, et al. Fever is associated with earlier antibiotic onset and reduced mortality in patients with sepsis admitted to the ICU[J]. Scientific Reports, 2021, 11(1):23949. [6] HU Jing, LÜ Chenwei, HU Xinxing, et al. Effect of hypoproteinemia on the mortality of sepsis patients in the ICU: a retrospective cohort study[J]. Scientific Reports, 2021, 11(1):24379. [7] VINCENT J L, MENDONCA A, CANTRAINE F, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study[J]. Critical Care Medicine, 1998, 26(11):1793-1800. [8] FORD D W, GOODWIN A J, SIMPSON A N, et al. A severe sepsis mortality prediction model and score for use with administrative data[J]. Critical Care Medicine, 2016, 44(2):319-327. [9] CARRARA M, BASELLA G, FERRARIO M. Mortality prediction model of septic shock patients based on routinely recorded data[J]. Computational and Mathematical Methods in Medicine, 2015, 2015(1):761435. [10] KHWANNIMIT B, BHURAVANONTACHAI R, VATTANVANIT V. Validation of the sepsis severity score compared with updated severity scores in predicting hospital mortality in sepsis patients[J]. Shock, 2017, 47(6):720-725. [11] HOU Nianzong, LI Mingzhe, HE Lu, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost[J]. Journal of Translational Medicine, 2020, 18(1):462-462. [12] PERNG J W, KAO I H, KUNG C T, et al. Mortality prediction of septic patients in the emergency department based on machine learning[J]. Journal of Clinical Medicine, 2019, 8(11):1906. [13] 化盈盈,张岱墀,葛仕明. 深度学习模型可解释性的研究进展[J]. 信息安全学报,2020,5(3):1-12. HUA Yingying, ZHANG Daichi, GE Shiming. Research progress in the interpretability of deep learning models[J]. Journal of Information Security, 2020, 5(3):1-12. [14] 陈珂锐,孟小峰. 机器学习的可解释性[J]. 计算机研究与发展,2020,57(9):1971-1986. CHEN Kerui, MENG Xiaofeng. Interpretability of machine learning[J]. Journal of Computer Research and Development, 2020, 57(9):1971-1986. [15] 曾春艳,严康,王志锋,等. 深度学习模型可解释性研究综述[J]. 计算机工程与应用,2021,57(8):1-9. ZENG Chunyan, YAN Kang, WANG Zhifeng, et al. A review of research on the interpretability of deep learning models[J]. Computer Engineering and Applications, 2021, 57(8):1-9. [16] RAIKOMAR A, DEAN J, KOHANE I. Machine learning in medicine[J]. New England Journal of Medicine, 2019, 380(14):1347-1358. [17] LIM B, ARIK S O, LOEFF N, et al. Temporal fusion transformers for interpretable multi-horizon time series forecasting[J]. International Journal of Forecasting, 2021, 37(4):1748-1764. [18] HOOKER S, ERHAN D, KINDERMANS P J, et al. A benchmark for interpretability methods in deep neural networks[C] //Advances in Neural Information Processing Systems. Vancouver: Curran Associates Incorporated, 2019. [19] MENG C, TRINH L, XU N, et al. Interpretability and fairness evaluation of deep learning models on MIMIC-IV dataset[J]. Scientific Reports, 2022, 12:7166. [20] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vega: Curran Associates Incorporated, 2016:770-778. [21] MITCHELL R, COOPER J, FRANK E, et al. Sampling permutations for Shapley value estimation[J]. Journal of Machine Learning Research, 2022, 23(43):1-46. [22] HE Shengfeng, ZHE Huang, LIU Wenxi, et al. SuperCNN: a superpixelwise convolutional neural network for salient object detection[J]. International Journal of Computer Vision, 2015, 115(3):330-344. [23] ZAFEIRIOU A, KALLIPOLITIS A, MAGLOGIANNIS I. Ensembling to leverage the interpretability of medical image analysis systems[J]. IEEE Access, 2023,11:76437-76447. [24] SUNDARARAJAN M, TALY A, YAN Q. Axiomatic attribution for deep networks[C] //International Conference on Machine Learning. Sydney: PMLR, 2017:3319-3328. [25] BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J]. Public Library of Science One, 2015, 10(7):e0130140. [26] HOCHULI J, HELBLING A, SKAIST T, et al. Visualizing convolutional neural network protein-ligand scoring[J]. Journal of Molecular Graphics & Modelling, 2018, 84:96-108. [27] TOLLES J, MEURER W J. Logistic regression: relating patient characteristics to outcomes[J]. The Journal of the American Medical Association, 2016, 316(5):533-534. [28] OSMAN A I A, AHMED A N, CHOW M F, et al. Extreme gradient boosting(Xgboost)model to predict the groundwater levels in selangor malaysia[J]. Ain Shams Engineering Journal, 2021, 12(2):1545-1556. [29] MASCARO J, ASNER G P, KNAPP D E, et al. A tale of two “forests”: random forest machine learning AIDS tropical forest carbon mapping[J]. Public Library of Science One, 2014, 9(1):E85993. [30] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of statistics, 2001, 29(5):1189-1232. |
| [1] | 梁霞,郭洁. 基于在线评论的线上教学平台选择方法[J]. 《山东大学学报(理学版)》, 2024, 59(9): 108-118. |
| [2] | 黎超,廖薇. 基于医疗知识驱动的中文疾病文本分类模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 122-130. |
| [3] | 纪杰,孙承杰,单丽莉,尚伯乐,林磊. 基于提示学习的电信网络诈骗案件分类方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 113-121. |
| [4] | 罗奇,苟刚. 基于聚类和群组归一化的多模态对话情绪识别[J]. 《山东大学学报(理学版)》, 2024, 59(7): 105-112. |
| [5] | 赵峰叙,王健,林原,林鸿飞. 面向排序学习的概率分布优化模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 95-104. |
| [6] | 黄兴宇,赵明宇,吕子钰. 面向图神经网络表征学习的类别知识探针[J]. 《山东大学学报(理学版)》, 2024, 59(7): 85-94. |
| [7] | 桂梁,徐遥,何世柱,张元哲,刘康,赵军. 基于动态邻居选择的知识图谱事实错误检测方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 76-84. |
| [8] | 咸宁,范意兴,廉涛,郭嘉丰. 融合多重特征的噪声网络对齐方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 64-75. |
| [9] | 孙承杰,李宗蔚,单丽莉,林磊. 一种基于核心论元的篇章级事件抽取方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 53-63. |
| [10] | 刘沛羽,姚博文,高泽峰,赵鑫. 基于矩阵乘积算符表示的序列化推荐模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 44-52, 104. |
| [11] | 邵伟,朱高宇,于雷,郭嘉丰. 高维数据的降维与检索算法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 27-43. |
| [12] | 杨纪元,马沐阳,任鹏杰,陈竹敏,任昭春,辛鑫,蔡飞,马军. 基于自监督的预训练在推荐系统中的研究[J]. 《山东大学学报(理学版)》, 2024, 59(7): 1-26. |
| [13] | 陈海粟,廖佳纯,姚思诚. 政府开放数据中个人信息披露识别与统计方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 95-106. |
| [14] | 温欣,李德玉. 基于属性加权的ML-KNN方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 107-117. |
| [15] | 曾雪强,孙雨,刘烨,万中英,左家莉,王明文. 基于情感分布的emoji嵌入式表示[J]. 《山东大学学报(理学版)》, 2024, 59(3): 81-94. |
|
||