山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (08): 40-45.doi: 10.6040/j.issn.1671-9352.0.2015.051
彭家寅
PENG Jia-yin
摘要: 引入了基于模糊集的∈-软集和q-软集的概念,给出了一个∈-软集和q-软集为伪BL-代数的软(蕴涵)滤子的若干刻画. 利用伪BL-代数的(∈,∈∨q)-模糊 (蕴涵) 滤子的概念, 给出一个∈-软集为软(蕴涵)滤子的描述.
中图分类号:
[1] ZADEH L A. From circuit theory to system theory[J]. Proceedings of the IRE, 1962, 50(5):856-865. [2] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353. [3] ATANASSOV K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96. [4] GAU W L, BUEHRER D J. Vague sets[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(2):610-614. [5] GORZALZANY M B. A method of inference in approximate reasoning based on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1987, 21(1):1-17. [6] PAWLAK Z. Rough sets[J]. International Journal of Information & Computer Sciences, 1982, 11(5):341-356. [7] MOLODTSOV D. Soft set theory-First results[J]. Computers & Mathematics with Applications, 1999, 37(4/5):19-31. [8] MAJI P K, BISWAS R, ROY A R. Soft set theory[J]. Computers & Mathematics with Applications, 2003, 45(4/5):555-562. [9] MAJI P K, ROY A R, BISWAS R. An application of soft sets in a decision making problem[J]. Computers & Mathematics with Applications, 2002, 44 (8/9):1077-1083. [10] CHEN D, TSANG E C C, YEUNG D S, et al. The parameterization reduction of soft sets and its applications[J]. Computers & Mathematics with Applications, 2005, 49(5/6):757-763. [11] JUN Young bae, XIN Xiaolong. Fuzzy prime ideals and invertible fuzzy ideals in BCK-algebras[J]. Fuzzy Sets and Systems, 2001, 117(3): 471-476. [12] ZHAN Jianming, JUN Young bae, DUDEK Wieslaw A. On (∈,∈∨q)-fuzzy filters of pseudo-BL algebras[J]. Bulletim of the Malaysian Mathematical Sciences Society: Second Series, 2010, 33 (1): 57-67. [13] XU Wei, MA Jian, WANG Shouyang, et al. Vague soft sets and their properties[J]. Computers & Mathematics with Applications, 2010, 59(2):787-794. |
[1] | 于晓丹,董丽,吴聪,孔祥智. 软关联环[J]. 山东大学学报(理学版), 2018, 53(4): 31-35. |
[2] | 刘春辉. 关于格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想[J]. 山东大学学报(理学版), 2018, 53(2): 65-72. |
[3] | 刘春辉. BL代数的区间值(∈,∈∨q)-模糊滤子理论[J]. 山东大学学报(理学版), 2014, 49(10): 83-89. |
[4] | 陈桂英. 带有阈值的广义模糊双向联想记忆#br# 网络的稳定性分析[J]. 山东大学学报(理学版), 2014, 49(1): 80-85. |
[5] | 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91. |
[6] | 翟俊海, 张垚, 王熙照. 相容粗糙模糊集模型[J]. 山东大学学报(理学版), 2014, 49(08): 73-79. |
[7] | 刘春辉1,2. 布尔代数的区间值(∈,∈∨ q)模糊子代数[J]. J4, 2013, 48(10): 94-98. |
[8] | 张海东1,贺艳平2. 广义区间值模糊粗糙集模型及其公理化特性[J]. J4, 2013, 48(09): 56-63. |
[9] | 潘玲, 廖祖华*,王秋菊,李云,嵇敏. 环的(∈,∈∨q)-直觉模糊理想[J]. J4, 2012, 47(8): 16-21. |
[10] | 李晓萍1,孙刚2. 直觉模糊全不变子群与特征子群[J]. J4, 2012, 47(2): 119-122. |
[11] | 刘春辉1,2. 滤子化软FI代数[J]. J4, 2012, 47(11): 94-98. |
[12] | 闫立梅. 内P-模糊集并-分离及其属性特征[J]. J4, 2012, 47(1): 104-109. |
[13] | 林梦雷1,杨伟萍2. 蕴涵区间直觉模糊粗糙集及其性质[J]. J4, 2011, 46(8): 104-109. |
[14] | 鲁小云1,杨勇2. 单向S-模糊粗糙集及其应用[J]. J4, 2011, 46(8): 110-113. |
[15] | 张胜礼1,潘正华2. 模糊知识中否定知识处理的一种改进的集合描述[J]. J4, 2011, 46(5): 103-109. |
|