山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (12): 54-57.doi: 10.6040/j.issn.1671-9352.0.2015.396
卢涛1, 王习娟2, 贺伟3
LU Tao1, WANG Xi-juan2, HE Wei3
摘要: 基于Topos中的偏序对象, 以及相应的完备格对象定义, 证明了选择公理的一个新刻画: 选择公理成立当且仅当连续格对象等价于构造性连续格对象。
中图分类号:
[1] JOHNSTONE P T. Sketches of an elephant: a topos theory compendium[M]. Oxford: Oxford University Press, 2002. [2] MAC LANE S, MOERDIJK L. Sheaves in geometry and logic: a first introduction to topos[M]. New York: Springer-Verlag, 1992. [3] MAC LANE S. Categories for working mathematician[M]. New York: Springer-Verlag, 1972. [4] 贺伟. 范畴论[M]. 北京: 科学出版社, 2006. HE Wei. Category theory[M]. Beijing: Science Press, 2006. [5] JOHNSTONE P T, JOYAL A. Continuous categories and exponentiable toposes[J]. Journal of Pure and Applied Algebra, 1982, 25:255-296. [6] LAWVERE F W, ROSEBRUGH R. Sets for mathematics[M]. Combridge: Cambridge University Press, 2001. [7] WOOD R J. Ordered sets via adjunctions[M]// Categorical Foundations. PEDICCHIO M, THOLEN W. Combridge: Combridge University Press, 2004. [8] MITCHELL W, BENABOU J. Boolean topoi and the theory of sets[J]. Journal of Pure and Applied Algebra, 1972, 2:261-274. [9] 卢涛, 贺伟, 王习娟. Galois connections in a topos[J]. 数学研究与评论, 2010, 30(3):381-389. LU Tao, HE Wei, WANG Xi Juan. Galois connections in a topos[J]. Journal of Mathematical Research and Exposition, 2010, 30(3):381-389. [10] KOCK A, LECOUTURIER P, MIKKELSEN C J. Some topos theoretic concepts of finiteness[M]// Lecture Notes in Math Berlin: Springer-Verlag, 1975, 445:209-283. |
[1] | 卢涛,王习娟,贺伟. Topos中偏序对象的上(下)确界[J]. 山东大学学报(理学版), 2016, 51(4): 112-117. |
[2] | 卢涛,王习娟,贺伟. Topos中完备偏序对象上的算子理论[J]. 山东大学学报(理学版), 2016, 51(2): 64-71. |
|