您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (12): 54-57.doi: 10.6040/j.issn.1671-9352.0.2015.396

• 论文 • 上一篇    下一篇

Topos中选择公理的一个等价刻画

卢涛1, 王习娟2, 贺伟3   

  1. 1. 淮北师范大学数学科学学院, 安徽 淮北 235000;
    2. 南京大学数学系, 江苏 南京 210097;
    3. 南京师范大学数学科学学院, 江苏 南京 210097
  • 收稿日期:2015-08-24 修回日期:2015-11-09 出版日期:2015-12-20 发布日期:2015-12-23
  • 作者简介:卢涛(1974-),男,博士,副教授,研究方向为topos理论,范畴论,locle理论.E-mail:lutao7@live.com
  • 基金资助:
    国家自然科学基金资助项目(11171156);安徽省高校自然科学研究重点项目(KJ2015A064)

An equivalent characterization of the choice axiom in a Topos

LU Tao1, WANG Xi-juan2, HE Wei3   

  1. 1. School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, Anhui, China;
    2. Department of mathematics, Nanjing University, Nanjing 210097, Jiangsu, China;
    3. School of Mathematical Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu, China
  • Received:2015-08-24 Revised:2015-11-09 Online:2015-12-20 Published:2015-12-23

摘要: 基于Topos中的偏序对象, 以及相应的完备格对象定义, 证明了选择公理的一个新刻画: 选择公理成立当且仅当连续格对象等价于构造性连续格对象。

关键词: 完备格对象, 偏序对象, Topos, 选择公理

Abstract: We give the new definition of complete lattice object and the equivalent characterization of the choice axiom based on the partially ordered object in a Topos: the choice axiom is equivalent to that L is a continuous lattice object if and only if L is a constructive continuous lattice object.

Key words: Topos, the choice axiom, complete lattice object, partially ordered object

中图分类号: 

  • O189.11
[1] JOHNSTONE P T. Sketches of an elephant: a topos theory compendium[M]. Oxford: Oxford University Press, 2002.
[2] MAC LANE S, MOERDIJK L. Sheaves in geometry and logic: a first introduction to topos[M]. New York: Springer-Verlag, 1992.
[3] MAC LANE S. Categories for working mathematician[M]. New York: Springer-Verlag, 1972.
[4] 贺伟. 范畴论[M]. 北京: 科学出版社, 2006. HE Wei. Category theory[M]. Beijing: Science Press, 2006.
[5] JOHNSTONE P T, JOYAL A. Continuous categories and exponentiable toposes[J]. Journal of Pure and Applied Algebra, 1982, 25:255-296.
[6] LAWVERE F W, ROSEBRUGH R. Sets for mathematics[M]. Combridge: Cambridge University Press, 2001.
[7] WOOD R J. Ordered sets via adjunctions[M]// Categorical Foundations. PEDICCHIO M, THOLEN W. Combridge: Combridge University Press, 2004.
[8] MITCHELL W, BENABOU J. Boolean topoi and the theory of sets[J]. Journal of Pure and Applied Algebra, 1972, 2:261-274.
[9] 卢涛, 贺伟, 王习娟. Galois connections in a topos[J]. 数学研究与评论, 2010, 30(3):381-389. LU Tao, HE Wei, WANG Xi Juan. Galois connections in a topos[J]. Journal of Mathematical Research and Exposition, 2010, 30(3):381-389.
[10] KOCK A, LECOUTURIER P, MIKKELSEN C J. Some topos theoretic concepts of finiteness[M]// Lecture Notes in Math Berlin: Springer-Verlag, 1975, 445:209-283.
[1] 卢涛,王习娟,贺伟. Topos中偏序对象的上(下)确界[J]. 山东大学学报(理学版), 2016, 51(4): 112-117.
[2] 卢涛,王习娟,贺伟. Topos中完备偏序对象上的算子理论[J]. 山东大学学报(理学版), 2016, 51(2): 64-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!