山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 88-97.doi: 10.6040/j.issn.1671-9352.0.2016.286
张道祥1,2, 赵李鲜1, 胡伟1
ZHANG Dao-xiang1,2, ZHAO Li-xian1, HU Wei1
摘要: 研究了一类三种群食物链模型的强耦合交错扩散系统。 首先通过构造Lyapunov函数证明唯一的正平衡点在ODE系统下是全局渐近稳定的, 当交错扩散系数均为零时, 唯一的正平衡点仍是全局渐近稳定的。 当引入交错扩散时, 正平衡点则变得不稳定。 利用Routh-Hurwitz准则和Descartes符号法则证明了大的交错扩散系数(k21或k32足够大时)可以导致平衡点由原来的稳定变得不稳定。 最后利用数学软件Matlab 对我们的结果进行数值模拟, 得到了不同类型的Turing斑图, 包括六边形、条状以及二者共存的斑图。
中图分类号:
[1] 李海侠,李艳玲. 一类带B-D反应项的食物链模型正解的稳定性和唯一性[J]. 山东大学学报(理学版), 2013, 48(9):103-110. LI Haixia, LI Yanling. Stability and uniqueness of positive solutions for a food chain model with B-D functional response [J]. Journal of Shandong University(Natural Science), 2013, 48(9):103-110. [2] 杨斌, 王静. 具有 Holling Ⅳ 型功能性反应的非自治三种群食物链模型的周期解[J]. 东北师大学报(自然科学版), 2012, 44(1):10-15. YANG Bin, WANG Jing. Periodic solution of a nonautonomous three-species food-chain model with the Holling Ⅳ functional response[J]. Journal of Northeast Normal University(Natural Science), 2012, 44(1):10-15. [3] 王育全, 刘来福. 具有 Monod-Haldane功能反应的一类食物链模型的动力学行为[J]. 数学物理学报, 2007, 27(1):79-89. WANG Yuquan, LIU Laifu. On the dynamics of a food chain with Monod-Haldane functional response[J]. Acta Mathematics Scientia, 2007, 27(1):79-89. [4] LV S, ZHAO M. The dynamic complexity of a three species food chain model[J]. Chaos, Solitons and Fractals, 2008, 37(5):1469-1480. [5] MCCANN K, YODZIS P. Bifurcation structure of a three-species food-chain model[J]. Theoretical population biology, 1995, 48(2):93-125. [6] 屈菲. 带扩散项的三级营养食物链模型斑图的存在性[D]. 兰州:西北师范大学硕士学位论文, 2014. QU Fei. The existence of stationary patterns for a tritrophic food chain model with diffusion[D]. Lanzhou: Masters Degree Thesis of Northwest Normal University, 2014. [7] 伏升茂, 温紫娟, 崔尚斌. 三种群食物链交错扩散模型的整体解[J]. 数学学报, 2007, 50(1):75-89. FU Shengmao, WEN Zijuan, CUI Shangbin. On global solutions for the three-species food-chain model with cross-diffusion[J]. Acta Mathematica Sinica, 2007, 50(1):75-89. [8] PARSHAD R D, KUMARI N, KASIMOV A R, et al. Turing patterns and long-time behavior in a three-species food-chain model[J]. Mathematical Biosciences, 2014, 254(8):83-102. [9] TANG Xiaosong, SONG Yongli. Cross-diffusion induced spatiotemporal patterns in a predator—prey model with herd behavior[J]. Nonlinear Analysis: Real World Applications, 2015, 24:36-49. [10] TURING A M. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal of London. Series B, Biological Sciences, 1952, 237(64):37-72. [11] LING Zhi, ZHANG Lai, LIN Zhigui. Turing pattern formation in a predator—prey system with cross diffusion[J]. Applied Mathematical Modelling, 2014, 38(21):5022-5032. [12] PETER Y H P, WANG M X. Strategy and stationary pattern in a three-species predator-prey model[J]. Journal of Differential Equations, 2004, 200(2):245-273. [13] LI Jianjun, GAO Wenjie. A strongly coupled predator-prey system with modified Holling-Tanner functional response[J]. Computer and Mathematics with Applications, 2010, 60(7):1908-1916. [14] LOTFI E M, MAZIANE M, HATTAF K, et al. Partial differential equations of an epidemic model with spatial diffusion[J]. International Journal of Partial Differential Equations, 2014(2014):186437-186437.6 [15] 胡文勇, 邵元智. 局域浓度调控扩散系数的次氯酸-碘离子-丙二酸系统图灵斑图形成中的反常扩散[J]. 物理学报, 2014, 63(23):238202. HU Wenyong, SHAO Yuanzhi. Anomalous diffusion in the formation of Turing pattern for the chlorine-iodine-malonic-acid system with a local concentration depended diffusivity [J]. Journal of Physics, 2014, 63(23): 238202. [16] CHIA-Ven Pao. Nonlinear Parabolic and Elliptic Equations[M] , New York: Plenum Press, 1992. [17] YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations[M]. Beijing: Science Press, 1990. [18] 马知恩, 周义仓. 种群生态学的数学建模与研究[M]. 安徽: 安徽教育出版社, 1996. MA Zhien, ZHOU Yicang. Mathematical modeling and research of population ecology[M]. Anhui: Anhui Education Press, 1996. [19] Hale J K. Ordinary differential equations[M]. FL:Krieger, Malabar, 1980. |
[1] | 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122. |
[2] | 张丽娜,吴守妍. 修正的Leslie-Gower捕食者-食饵#br# 扩散模型解的整体性态[J]. 山东大学学报(理学版), 2014, 49(1): 86-91. |
[3] | 李海侠1,2,李艳玲1. 一类带B-D反应项的食物链模型正解的稳定性和惟一性[J]. J4, 2013, 48(09): 103-110. |
[4] | 董春燕,伏升茂. 一类害虫流行病控制模型非常数正平衡解的存在性[J]. J4, 2011, 46(3): 80-88. |
|