您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (2): 55-59.doi: 10.6040/j.issn.1671-9352.0.2016.374

• • 上一篇    下一篇

具有半对称度量联络拟常曲率空间中子流形的Casorati曲率不等式

刘旭东,潘旭林,张量*   

  1. 安徽师范大学数学计算机科学学院, 安徽 芜湖 241000
  • 收稿日期:2016-07-31 出版日期:2017-02-20 发布日期:2017-01-18
  • 通讯作者: 张量(1979— ), 男, 硕士, 副教授, 研究方向为微分几何. E-mail:zhliang43@163.com E-mail:2287354429@qq.com
  • 作者简介:刘旭东(1992— ), 男, 硕士研究生, 研究方向为微分几何. E-mail:2287354429@qq.com
  • 基金资助:
    安徽省高校优秀青年人才基金资助项目(2011SQRL021ZD)

Inequalities for Casorati curvatures of submanifolds in a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection

LIU Xu-dong, PAN Xu-lin, ZHANG Liang*   

  1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China
  • Received:2016-07-31 Online:2017-02-20 Published:2017-01-18

摘要: 利用一个新的代数不等式, 对具有半对称度量联络拟常曲率空间中的子流形建立了两个关于广义标准δ-Casorati 曲率的不等式。

关键词: Casorati 曲率, 拟常曲率空间, 半对称度量联络, 不等式

Abstract: By using a new algebraic inequality, we obtain two inequalities for generalized normalized Casorati curvatures of submanifolds in a Riemanian manifold of quasi-constant curvature with a semi-symmetric metric connection.

Key words: inequality, Casorati curvature, Riemannian manifold of quasi-constant curvature, semi-symmetric metric connection

中图分类号: 

  • O186
[1] CHEN Bangyen. Mean curvature and shape operator of isometric immersions in real-space-forms[J]. Glasgow Mathematical Journal, 1996, 38(1):87-97.
[2] LI Guanghan, WU Chuanxi. Slant immersions of complex space forms and Chen’s inequality[J]. Acta Mathematica Scientia, 2005, 25B(2):223-232.
[3] LI Xingxiao, HUANG Guangyue, XU Jiaolou. Some inequalities for submanifolds in locally conformal almost cosymplectic manifolds[J]. Soochow Journal of Mathematics, 2005, 31(3): 309-319.
[4] LIU Ximin, DAI Wanji. Ricci curvature of submanifolds in a quaternion projective space[J]. Commun Korean Math Soc, 2002, 17(4):625-634.
[5] OPERA T. Chens inequality in lagrangian case[J]. Colloq Math, 2007, 108(1):163-169.
[6] DECU S, HAESEN S, VERSTRAELEN L. Optimal inequalities involving Casorati curvatures[J]. Bull Transylv Univ Brasov, Ser B, 2007, 14(49):85-93.
[7] DECU S, HAESEN S, VERSTRAELEN L. Optimal inequalities characterising quasi-umbilical submanifolds[J]. J Inequal Pure Appl Math, 2008, 9(3):1-7.
[8] SLESAR V, SAHIN B, V(^overI)LCU G E. Inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms[J]. Journal of Inequalities and Applications, 2014, 2014(1): 123.
[9] LEE J W, V(^overI)LCU G E. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space forms[J]. Taiwanese Journal of Mathematices, 2015, 19(3):691-702.
[10] LEE C W, YOON D W, LEE J W. Optimal inequalities for the Casorati curvatures of submanifolds of real space forms endowed with semi-symmetric metric connections[J]. Journal of Inequalities and Applications, 2014, 2014(1):327.
[11] ZHANG Pan, ZHANG Liang, SONG Weidong. Chens inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection[J]. Taiwanese Journal of Mathematices, 2014, 18(6):1827-1839.
[12] LEE J W, LEE C W, YOON D W. Inequalities for generalized δ-Casorati of submanifolds in real space forms endowed with semi-symmetric metric connections[J]. Revista de la Unión Matemática Argentina, 2016, 57(2):53-62.
[13] CHEN Bangyen, YANO K. Hypersurfaces of a conformally flat space[J]. Tensor NS, 1972, 26: 318-322.
[14] YANO K. On semi-symmetric metric connection[J]. Revue Roumaine de Mathmatique Pures et Appl, 1970, 15:1579-1586.
[15] NAKAO Z. Submanifolds of a Riemannian manifolds with semi-symmetric metric connections[J]. Proceedings of the AMS, 1976, 54:261-266.
[16] IMAI T. Notes on semi-symmetric metric connections[J]. Tensor NS, 1972, 24:293-296.
[17] BLAIR D. Quasi-umbilical, minimal submanifolds of Euclidean space[J]. Simon Stevin, 1977, 51:3-22.
[1] 杨延涛. 求解单调变分不等式问题的一种修正的次梯度超梯度方法[J]. 山东大学学报(理学版), 2018, 53(2): 38-45.
[2] 冯德成,张潇,周霖. 弱鞅的一类极小值不等式[J]. 山东大学学报(理学版), 2017, 52(8): 65-69.
[3] 段丁钰,周岩,张华民,徐明姣. 考虑零售商不公平厌恶行为的供应链网络均衡研究[J]. 山东大学学报(理学版), 2017, 52(5): 58-69.
[4] 陈霞,陈纯荣. 广义向量变分不等式的间隙函数与误差界[J]. 山东大学学报(理学版), 2017, 52(4): 1-5.
[5] 邓义华. f-调和函数的Hess矩阵的估计及其在分裂定理中的应用[J]. 山东大学学报(理学版), 2017, 52(4): 83-86.
[6] 冯德成,王晓艳,高玉峰. 基于Y函数的条件N-弱鞅的最大φ-不等式[J]. 山东大学学报(理学版), 2017, 52(2): 91-96.
[7] 何国庆,张量,刘海蓉. 具有半对称度量联络的广义Sasakian空间形式中的子流形的Chen-Ricci不等式[J]. 山东大学学报(理学版), 2017, 52(10): 56-63.
[8] 江龙,陈敏. 基于加权g-期望的Jensen不等式,矩不等式与大数定律[J]. 山东大学学报(理学版), 2016, 51(8): 1-9.
[9] 卢威,宋晓秋,黄雷雷. 基于模糊积分的Hermite-Hadamard和Sandaor类型的不等式[J]. 山东大学学报(理学版), 2016, 51(8): 22-28.
[10] 张玉,肖犇琼,许可,沈爱婷. NSD随机变量阵列的完全矩收敛性[J]. 山东大学学报(理学版), 2016, 51(6): 30-36.
[11] 徐言超. 连续时间正系统的静态输出反馈鲁棒H控制[J]. 山东大学学报(理学版), 2016, 51(12): 87-94.
[12] 田晓欢,陈纯荣. Ky Fan拟不等式的间隙函数和误差界[J]. 山东大学学报(理学版), 2016, 51(11): 123-126.
[13] 苏曼,张量. 关于伪黎曼空间形式中类空子流形Chen不等式的两个结果[J]. 山东大学学报(理学版), 2016, 51(10): 59-64.
[14] 李影, 宋卫东. 关于deSitter空间中的伪脐类时子流形[J]. 山东大学学报(理学版), 2015, 50(10): 64-67.
[15] 潘旭林, 张攀, 张量. 拟常曲率空间中子流形的Casorati曲率不等式[J]. 山东大学学报(理学版), 2015, 50(09): 84-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!