您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (8): 48-52.doi: 10.6040/j.issn.1671-9352.0.2016.491

• • 上一篇    下一篇

剩余格上n-重正蕴涵滤子的特征及刻画

刘莉君   

  1. 陕西理工大学数学与计算机科学学院, 陕西 汉中 723001
  • 收稿日期:2016-11-03 出版日期:2017-08-20 发布日期:2017-08-03
  • 作者简介:刘莉君(1980— ),女,硕士,讲师,研究方向为模糊数学和逻辑代数. E-mail:lljgsjys@163.com
  • 基金资助:
    国家自然科学基金资助项目(11401357);陕西理工大学科研基金资助项目(SLGKY16-02)

Characterizations of n-fold positive implicative filter in residuated lattice

LIU Li-jun   

  1. School of Mathematics and Computer Science, Shaanxi Sci-Tech University, Hanzhong 723001, Shaanxi, China
  • Received:2016-11-03 Online:2017-08-20 Published:2017-08-03

摘要: 在剩余格上引入了两类滤子——n-重蕴涵滤子和n-重正蕴涵滤子, 研究它们一系列的特征及性质,得到了剩余格上的非空子集F成为n-重蕴涵滤子和n-重正蕴涵滤子的充要条件,以及 这两类滤子之间相互等价的充要条件。研究结果进一步拓展了剩余格上的滤子理论, 并为其在代数逻辑及计算机信息处理等方面的应用奠定了理论基础。

关键词: 剩余格, n-重蕴涵滤子, 滤子, n-重正蕴涵滤子

Abstract: The concept of n-fold implicative filter and n-fold positive implicative filter are introduced in residuated lattice. By studying their properties, a series of characterization theorems are given. On this basis, the sufficient and necessary condition that non-empty subsets of residuated lattice become n-fold(positive)implicative filter are proposed. And the relation between n-fold implicative filter and n-fold positive implicative filter is discussed. The results of the study further extend the filter theory of the residuated lattice. It is important theoretical foundation for the application of algebraic logic and computer information processing.

Key words: n-fold positive implicative filter, residuated lattice, filter, n-fold implicative filter

中图分类号: 

  • O159
[1] HAVESHKI M, BORUMAND A. Some types of filters in BL-algebras[J]. Soft Computing, 2006, 10(8):657-664.
[2] 王国俊. 非经典数理逻辑与近似推理[M].北京:科学出版社,2008. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. Beijing: Science Press, 2008.
[3] 周红军. 概率计量逻辑及其应用[M].北京:科学出版社,2015. ZHOU Hongjun. Probability measurement logic and its application[M]. Beijing: Science Press, 2015.
[4] 裴道武. MTL代数的特征定理[J]. 数学学报, 2007,50(6):1201-1206. PEI Daowu. The characterizations of MTL-algebras[J]. Acta Mathematica Sinica, 2007, 50(6):1201-1206.
[5] 刘春辉. 关于MTL代数的模糊滤子[J]. 模糊系统与数学, 2015,29(2):98-108. LIU Chunhui. On fuzzy filters of MTL-algebras[J]. Fuzzy Systems and Mathematics, 2015, 29(2):98-108.
[6] 王伟,李毅君,童丹. BL代数的obstinate滤子和ultra滤子[J]. 内蒙古师范大学学报(自然科学汉文版),2013,42(4):380-382. WANG Wei, LI Yijun, TONG Dan. Results on obstinate filters and ultra filters of BL-algebras[J]. Journal of Inner Mongolia Normal University(Natural Science Edition), 2013, 42(4):380-382.
[7] HAVESHKI M. On α-filter of BL-algebras[J]. Journal of Intelligent and Fuzzy Systems, 2015, 28(1):373-382.
[8] HAVESHKI M, ESLAMI M. n-fold filters in BL-algebras[J]. Mathematical Logic Quarterly, 2008, 54(2):176-186.
[9] BORZOOEI R. Fuzzy n-fold fantastic filters in BL-algebras[J]. Afrika Matematika, 2014, 25(4):1001-1012.
[10] TURUNEN E, TCHIKAPA N, LELE C. n-fold implicative basic logic is Gödel logic[J]. Soft Comput, 2012, 16(1):177-181.
[11] ZHU Yiquan, XU Yang. On filter theory of residuated lattices[J]. Information Sciences, 2010, 180(19):3614-3632.
[12] MOTAMED S, BORUMAND A. n-fold obtinate filters in BL-algebras[J]. Neural Comouting and Application, 2011, 20(4):461-472.
[1] 彭家寅. 剩余格上的落影模糊滤子[J]. 山东大学学报(理学版), 2018, 53(2): 52-64.
[2] 梁颖,崔艳丽,吴洪博. 基于BL系统的演绎系统集代数的剩余格属性[J]. 山东大学学报(理学版), 2017, 52(11): 65-70.
[3] 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110.
[4] 吴苏朋,赵彬. FI代数中基于相对非的滤子[J]. 山东大学学报(理学版), 2016, 51(4): 118-126.
[5] 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107.
[6] 彭家寅. 格蕴涵代数的不分明化滤子[J]. 山东大学学报(理学版), 2016, 51(2): 119-126.
[7] 杨小飞. 模糊化拓扑空间的刻画[J]. 山东大学学报(理学版), 2016, 51(2): 114-118.
[8] 彭家寅. 关联模糊集理论的伪BL-代数的软滤子[J]. 山东大学学报(理学版), 2015, 50(08): 40-45.
[9] 寇海燕, 吴洪博. MTL代数的Wajsberg形式及其应用[J]. 山东大学学报(理学版), 2015, 50(02): 75-82.
[10] 刘春辉. 正则剩余格的模糊超⊙-理想[J]. 山东大学学报(理学版), 2014, 49(12): 87-94.
[11] 刘春辉. BL代数的区间值(∈,∈∨q)-模糊滤子理论[J]. 山东大学学报(理学版), 2014, 49(10): 83-89.
[12] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63-67.
[13] 罗清君1,2. R0代数上的一致拓扑空间[J]. J4, 2013, 48(2): 72-78.
[14] 罗清君1,2, 王国俊1*. BL代数中极大滤子的拓扑性质[J]. J4, 2013, 48(12): 47-51.
[15] 刘春辉1,2. 正则剩余格的素模糊⊙理想及其拓扑性质[J]. J4, 2013, 48(12): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!