您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (8): 90-93.doi: 10.6040/j.issn.1671-9352.0.2016.507

• • 上一篇    下一篇

具有可乘逆断面的正则半群上的预同态和限制积

王守峰   

  1. 云南师范大学数学学院, 云南 昆明 650500
  • 收稿日期:2016-11-03 出版日期:2017-08-20 发布日期:2017-08-03
  • 作者简介:王守峰(1979— ),男,博士,副教授, 研究方向为半群和组合半群. E-mail:wsf1004@163.com
  • 基金资助:
    国家自然科学基金资助项目(11661082)

Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal

WANG Shou-feng   

  1. School of Mathematics, Yunnan Normal University, Kunming 650500, Yunnan, China
  • Received:2016-11-03 Online:2017-08-20 Published:2017-08-03

摘要: 介绍了具有可乘逆断面的正则半群上的预同态及限制积的概念, 证明了具有可乘逆断面的正则半群类连同其上面的预同态构成一个范畴,利用限制积得到了这类半群上的预同态的一些刻画。

关键词: 可乘逆断面, 限制积, 正则半群, 预同态, 范畴

Abstract: Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal are introduced. It is proved that the class of regular semigroups with a multiplicative inverse transversal together with prehomomorphisms form a category, by using restricted products some characterizations of prehomomorphisms between two regular semigroups with a multiplicative inverse transversal are obtained.

Key words: multiplicative inverse transversal, restricted product, prehomomorphism, category, regular semigroup

中图分类号: 

  • O152.7
[1] BLYTH T S, MCFADDEN R B. Regular semigroups with a multiplicative inverse transversal[J]. Proc Roy Soc Edinburgh, 1982, 92A:253-270.
[2] BLYTH T S. Inverse transversals-a guided tour[C] //Semigroups: Proceedings of the international conference(Braga, 1999). River Edge, New Jersey: World Sci Publ, 2000: 26-43.
[3] TANG Xilin. Regular semigroups with inverse transversals[J]. Semigroup Forum,1997, 55:24-32.
[4] TANG Xilin. Identities for a class of regular unary semigroups[J]. Communications in Algebra, 2008, 36:2487-2502.
[5] TANG Xilin, GU Ze. Words on free bands with inverse transversals[J]. Semigroup Forum, 2015, 91:101-116.
[6] MCALISTER D B. v-Prehomomorphisms on inverse semigroups[J]. Pac J Math, 1976, 67:215-231.
[7] MCALISTER D B, REILLY N R. E-unitary covers for inverse semigroups[J]. Pac J Math, 1977, 68:161-174.
[8] LAWSON M V. Inverse semigroups, the theory of partial symmetries[M]. London:World Sci Publ, 1998:75-82.
[9] PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: John Wiley and & Sons Inc, 1999: 48-56.
[10] KNAUER U. Algebraic graph theory, morphisms, monoids and matrices[M]. Berlin: De Gruyter, 2011: 48-50.
[1] 王守峰. 具有可乘逆断面的正则半群的λ-半直积[J]. 山东大学学报(理学版), 2018, 53(4): 20-23.
[2] 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110.
[3] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[4] 刘妮,张苗苗. 连续定向完备序半群及其范畴性质[J]. 山东大学学报(理学版), 2016, 51(6): 57-64.
[5] 冯清,黄菊. Monoidal范畴的两种构造[J]. 山东大学学报(理学版), 2016, 51(4): 30-34.
[6] 陈露. N(2,2,0)代数的内正则半群[J]. 山东大学学报(理学版), 2016, 51(12): 24-28.
[7] 孙燕, 任学明. C-拟正则半群上的可许同余对[J]. 山东大学学报(理学版), 2015, 50(12): 81-84.
[8] 梁少辉. E-quantale范畴[J]. 山东大学学报(理学版), 2015, 50(12): 47-53.
[9] 刘洋1,王正萍2,许庆兵2. Gabriel单子与模范畴的局部化[J]. 山东大学学报(理学版), 2014, 49(2): 24-28.
[10] 郭双建1,董丽红2. 广义H-李代数的Engel定理[J]. 山东大学学报(理学版), 2014, 49(04): 55-57.
[11] 闫婷婷,刘仲奎. 余分解维数[J]. J4, 2013, 48(8): 5-14.
[12] 李海洋. 闭集格范畴的定向极限[J]. J4, 2013, 48(6): 100-103.
[13] 王圣祥1,2,郭双建2. 一类对称范畴上的Hom-Hopf模[J]. J4, 2013, 48(4): 40-45.
[14] 许庆兵1,陈华喜2. 关于模范畴的商范畴与局部化[J]. J4, 2013, 48(4): 46-50.
[15] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!