您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 20-23.doi: 10.6040/j.issn.1671-9352.0.2017.570

• • 上一篇    下一篇

具有可乘逆断面的正则半群的λ-半直积

王守峰1,2   

  1. 1.云南师范大学数学学院, 云南 昆明 650500;2.山东大学数学学院, 山东 济南 250100
  • 收稿日期:2017-10-31 出版日期:2018-04-20 发布日期:2018-04-13
  • 作者简介:王守峰(1979— ),男,博士,副教授, 研究方向为半群和组合半群. E-mail: wsf1004@163.com
  • 基金资助:
    国家自然科学基金资助项目(11661082)

λ-Semidirect products of regular semigroups with a multiplicative inverse transversal

WANG Shou-feng1,2   

  1. 1. School of Mathematics, Yunnan Normal University, Kunming 650500, Yunnan, China;
    2. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Received:2017-10-31 Online:2018-04-20 Published:2018-04-13

摘要: 引入了具有可乘逆断面的正则半群上的λ-半直积的概念, 证明了两个具有可乘逆断面的正则半群的λ-半直积仍为具有可乘逆断面的正则半群,推广了逆半群的相关结论。

关键词: 可乘逆断面, 正则半群, λ-半直积

Abstract: λ-Semidirect products of regular semigroups with a multiplicative inverse transversal are introduced. It is proved that the λ-semidirect of two regular semigroups with a multiplicative inverse transversal is always a regular semigroup with a multiplicative inverse transversal, which generalizes the related results of inverse semigroups.

Key words: regular semigroup, multiplicative inverse transversal, λ-semidirect

中图分类号: 

  • O152.7
[1] BLYTH T S, MCFADDEN R B. Regular semigroups with a multiplicative inverse transversal[J]. Proc Roy Soc Edinburgh, 1982, 92A:253-270.
[2] BLYTH T S. Inverse transversals—a guided tour[C] // Semigroups: Proceedings of the international conference(Braga, 1999). River Edge, NJ: World Sci Publ, 2000: 26-43.
[3] TANG Xilin. Regular semigroups with inverse transversals[J]. Semigroup Forum,1997, 55:24-32.
[4] TANG Xilin. Identities for a class of regular unary semigroups[J]. Communications in Algebra, 2008, 36:2487-2502.
[5] TANG Xilin, GU Ze. Words on free bands with inverse transversals[J]. Semigroup Forum, 2015, 91:101-116.
[6] 王守峰.具有可乘逆断面的正则半群上的预同态和限制积[J].山东大学学报(理学版), 2017, 52(8):90-93, 99. WANG Shoufeng. Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal[J]. Journal of Shandong University(Natural Science), 2017, 52(8):90-93, 99.
[7] BILLHARDT B. On a wreath product embedding and idempotent pure congruences on inverse semigroups[J]. Semigroup Forum, 1992, 45:45-54.
[8] LAWSON M V. Inverse semigroups, the theory of partial symmetries[M]. London: World Sci Publ, 1998: 75-82.
[9] PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: John Wiley and & Sons Inc, 1999: 48-56.
[1] 王守峰. 具有可乘逆断面的正则半群上的预同态和限制积[J]. 山东大学学报(理学版), 2017, 52(8): 90-93.
[2] 陈露. N(2,2,0)代数的内正则半群[J]. 山东大学学报(理学版), 2016, 51(12): 24-28.
[3] 孙燕, 任学明. C-拟正则半群上的可许同余对[J]. 山东大学学报(理学版), 2015, 50(12): 81-84.
[4] 苏玉,孔祥智*. LρC-正则半群[J]. J4, 2011, 46(4): 68-69.
[5] 袁志玲 . 具有纯正断面的正则半群的构造[J]. J4, 2008, 43(8): 35-37 .
[6] 毕晓冬 . 完全正则半群的一个构造方法[J]. J4, 2007, 42(1): 40-43 .
[7] 邢建民 . 正则半群上的LR-正规orthogroup同余[J]. J4, 2006, 41(1): 41-44 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!