山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 20-23.doi: 10.6040/j.issn.1671-9352.0.2017.570
王守峰1,2
WANG Shou-feng1,2
摘要: 引入了具有可乘逆断面的正则半群上的λ-半直积的概念, 证明了两个具有可乘逆断面的正则半群的λ-半直积仍为具有可乘逆断面的正则半群,推广了逆半群的相关结论。
中图分类号:
[1] BLYTH T S, MCFADDEN R B. Regular semigroups with a multiplicative inverse transversal[J]. Proc Roy Soc Edinburgh, 1982, 92A:253-270. [2] BLYTH T S. Inverse transversals—a guided tour[C] // Semigroups: Proceedings of the international conference(Braga, 1999). River Edge, NJ: World Sci Publ, 2000: 26-43. [3] TANG Xilin. Regular semigroups with inverse transversals[J]. Semigroup Forum,1997, 55:24-32. [4] TANG Xilin. Identities for a class of regular unary semigroups[J]. Communications in Algebra, 2008, 36:2487-2502. [5] TANG Xilin, GU Ze. Words on free bands with inverse transversals[J]. Semigroup Forum, 2015, 91:101-116. [6] 王守峰.具有可乘逆断面的正则半群上的预同态和限制积[J].山东大学学报(理学版), 2017, 52(8):90-93, 99. WANG Shoufeng. Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal[J]. Journal of Shandong University(Natural Science), 2017, 52(8):90-93, 99. [7] BILLHARDT B. On a wreath product embedding and idempotent pure congruences on inverse semigroups[J]. Semigroup Forum, 1992, 45:45-54. [8] LAWSON M V. Inverse semigroups, the theory of partial symmetries[M]. London: World Sci Publ, 1998: 75-82. [9] PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: John Wiley and & Sons Inc, 1999: 48-56. |
[1] | 王守峰. 具有可乘逆断面的正则半群上的预同态和限制积[J]. 山东大学学报(理学版), 2017, 52(8): 90-93. |
[2] | 陈露. N(2,2,0)代数的内正则半群[J]. 山东大学学报(理学版), 2016, 51(12): 24-28. |
[3] | 孙燕, 任学明. C-拟正则半群上的可许同余对[J]. 山东大学学报(理学版), 2015, 50(12): 81-84. |
[4] | 苏玉,孔祥智*. LρC-正则半群[J]. J4, 2011, 46(4): 68-69. |
[5] | 袁志玲 . 具有纯正断面的正则半群的构造[J]. J4, 2008, 43(8): 35-37 . |
[6] | 毕晓冬 . 完全正则半群的一个构造方法[J]. J4, 2007, 42(1): 40-43 . |
[7] | 邢建民 . 正则半群上的LR-正规orthogroup同余[J]. J4, 2006, 41(1): 41-44 . |
|