您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (11): 1-11.doi: 10.6040/j.issn.1671-9352.0.2019.142

• •    下一篇

一个盲公开可验证的矩阵乘积外包计算方案

郑京竺,杨海宁,苏烨,秦静*   

  1. 山东大学数学学院, 山东 济南 250100
  • 发布日期:2019-11-06
  • 作者简介:郑京竺(1995— ),女,硕士研究生,研究方向为密码学、云计算安全. E-mail:zhengjingzhu95@163.com*通信作者简介:秦静(1960— ),女,博士,教授,研究方向为密码学、云计算安全等. E-mail:qinjing@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61272091,61772311)

A blindly public verifiable outsourcing scheme for matrix multiplication

ZHENG Jing-zhu, YANG Hai-ning, SU Ye, QIN Jing*   

  1. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Published:2019-11-06

摘要: 基于可验证数据库,提出了支持盲公开可验证的矩阵乘积匿名外包计算方案,该方案满足对计算结果公开可验证,同时可以保护用户身份及数据的隐私,防止恶意云服务器的欺骗行为。给出的安全性分析说明了方案在随机预言机模型下是适应性选择消息安全的。方案使用摊销模型,以降低计算开销,并通过模拟实验证明,与已有方案相比本方案计算开销更小。

关键词: 云计算, 外包计算, 矩阵乘积, 盲验证

Abstract: An outsourcing scheme for matrix multiplication in verifiable database is proposed. This scheme supports the blindly public verification, and protects identity privacy and data privacy for clients. This can prevent the servers malicious behavior. The security analysis proof shows that the proposed scheme is adaptive chosen-message security in the random oracle model. The scheme uses the amortized model to reduce the computational overhead. In addition, the resulos of simulated experiment show that the computational overhead of our scheme is smaller than the existing schemes.

Key words: cloud computing, outsourced computation, matrix multiplication, blind verification

中图分类号: 

  • TP309.7
[1] ARMBRUST M, FOX A, GRIFFITH R. A view of cloud computing[J]. Communications of the ACM, 2010, 53(4):50-58.
[2] LI H W, LIU D X, DAI Y S, et al. Engineering searchable encryption of mobile cloud networks: when QoE meets QoP[J]. IEEE Wireless Communications, 2015, 22(4):74-80.
[3] PUTHAL D, SAHOO B P S, MISHRA S, et al. Cloud computing features, issues and challenges: a big picture[C] // International Conference on Computational Intelligence and Networks.[S.l.] : IEEE, 2015: 116-123.
[4] FU S J, YU Y P, XU M. A secure algorithm for outsourcing matrix multiplication computation in the cloud[C] // Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing.[S.l.] : ACM, 2017: 27-33.
[5] 陈晓峰, 马建峰, 李晖, 等. 云计算安全[M]. 北京: 科学出版社, 2016: 115-150. CHEN Xiaofeng, MA Jianfeng, LI Hui, et al. Security in cloud computing[M]. Beijing: Science Press, 2016: 115-150.
[6] LI H W, YANG Y, LUAN T H, et al. Enabling fine-grained multi-keyword search supporting classified sub-dictionaries over encrypted cloud data[J]. IEEE Transactions on Dependable and Secure Computing, 2016, 13(3):312-325.
[7] NADEEM A. Cloud computing: security issues and challenges[J]. Journal of Wireless Communications, 2016, 1(1):10-15.
[8] 冯登国, 张敏, 张妍, 等. 云计算安全研究[J]. 软件学报, 2011, 22(1):71-83. FENG Dengguo, ZHANG Min, ZHANG Yan, et al. Study on cloud computing security[J]. Journal of Software, 2011, 22(1):71-83.
[9] BODKHE A P, DHOTE C A. Cloud computing security: an issue of concern[J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2015, 5(4):1337-1342.
[10] RADWAN T, AZER M, ABDELBAKI N. Cloud computing security: challenges and future trends[J]. International Journal of Computer Applications in Technology, 2017, 55(2):158.
[11] BENABBAS S, GENNARO R, VAHLIS Y. Verifiable delegation of computation over large datasets[C] // Annual Cryptology Conference.[S.l.] :[s.n.] , 2011: 111-131.
[12] CHEN X, LI J, HUANG X, et al. New publicly verifiable databases with efficient updates[J]. IEEE Transactions on Dependable and Secure Computing, 2015, 12(5):546-556.
[13] GENNARO R, GENTRY C. Non-interactive verifiable computing: outsourcing computation to untrusted workers[C] // Annual Cryptology Conference.[S.l.] :[s.n.] , 2010: 465-482.
[14] GENTRY C. Fully homomorphic encryption using ideal lattices[C] // The 41st Annual ACM Symposium on Theory of Computing.[S.l.] :[s.n.] , 2009: 169-178.
[15] GENTRY C. A fully homomorphic encryption scheme[D]. California: Standford University, 2009.
[16] GENTRY C. Toward basing fully homomorphic encryption on worst-case hardness[C] // 30th Annual Cryptology Conference. Berlin: Springer, 2010: 116-137.
[17] TANG C, CHEN Y. Efficient non-interactive verifiable outsourced computation for arbitrary functions[J]. IACR Cryptology ePrint Archive, 2014: 439.
[18] NASSAR M, ERRADI A, MALLUHI Q M. Practical and secure outsourcing of matrix computations to the cloud[C] // International Conference on Distributed Computing Systems Workshops. New York: IEEE, 2013: 70-75.
[19] ATALLAH M J, PANTAZOPOULOS K N, SPAFFORD E H. Secure outsourcing of some computation[R]. Indiana: Purdue University, 1996.
[20] YAO A C. Protocols for secure computations[C] // 23rd Annual Symposium on Foundations of Computer Science. New York: IEEE, 1982: 160-164.
[21] YAO A C. How to generate and exchange secrets[C] // 27th Annual Symposium on Foundations of Computer Science. New York: IEEE, 1986: 162-176.
[22] FIORE D, GENNARO R. Publicly verifiable delegation of large polynomials and matrix computations with applications[C] //Proceedings of the 2012 ACM Conference on Computer and Communications Security. New York: IEEE, 2012: 501-502.
[23] 胡杏, 裴定一, 唐春明, 等. 可验证安全外包矩阵计算及其应用[J]. 中国科学:信息科学, 2013, 43(7):842-852. HU Xing, PEI Dingyi, TANG Chunming, et al. Verifiable security outsourcing matrix calculation and its application[J]. Scientia Sinica(Informationis), 2013, 43(7):842-852.
[24] ZHANG Y H, BLANTON M. Efficient secure and verifiable outsourcing of matrix multiplications[C] // ISC2014 Proceedings of International Conference on Information Security. New York: IEEE, 2014: 158-178.
[25] LI H, ZHANG S, LUAN T H, et al. Enabling efficient publicly verifiable outsourcing computation for matrix multiplication[C] // International Telecommunication Networks and Applications Conference(ITNAC). New York: IEEE, 2015:44-50.
[26] LIU X, SUN W, QUAN H, et al. Publicly verifiable inner product evaluation over outsourced data streams under multiple keys[J]. IEEE Transactions on Services Computing, 2017, 10(5):826-838.
[27] ZHANG S M, LI H, DAI Y, et al. EPP-DMM: an efficient and privacy-protected delegation scheme for matrix multiplication[C] //GLOBECOM 2017-2017 IEEE Global Communications Conference. New York: IEEE, 2017: 1-6.
[28] ATENIESE G, CAMENISCH J, JOYE M. A practical and provably secure coalition-resistant group signature scheme[C] // Annual International Cryptology Conference. Berlin: Springer 2000: 255-270.
[29] CHUAM D, HEYST V E. Group signatures[C] // EUROCRYPT 1991. Advances in Cryptology-EUROCRYPT91. Berlin: Springer 1991: 257-265.
[30] LYNN Ben. The Pairing-Based Cryptography Library[EB/OL].(2013-07-01)[2019-03-01] http://crypto.stanford.edu/pbc/GB 7714-2015.
[1] 齐平,王福成,王必晴,梁昌勇. 基于失效规律感知的可靠动态级云资源调度算法[J]. 《山东大学学报(理学版)》, 2019, 54(1): 103-115.
[2] 王小艳,陈兴蜀,王毅桐,葛龙. 基于OpenStack的云计算网络性能测量与分析[J]. 山东大学学报(理学版), 2018, 53(1): 30-37.
[3] 韩盼盼,秦静. 云计算中可验证的外包数据库加密搜索方案[J]. 山东大学学报(理学版), 2017, 52(9): 41-53.
[4] 黄宇晴,赵波,肖钰,陶威. 一种基于KVM的vTPM虚拟机动态迁移方案[J]. 山东大学学报(理学版), 2017, 52(6): 69-75.
[5] 陈广瑞,陈兴蜀,王毅桐,葛龙. 一种IaaS多租户环境下虚拟机软件更新服务机制[J]. 山东大学学报(理学版), 2017, 52(3): 60-67.
[6] 姚克,朱斌瑞,秦静. 基于生物信息的可验证公钥可搜索加密协议[J]. 山东大学学报(理学版), 2017, 52(11): 11-22.
[7] 岳猛,吴志军,姜军. 云计算中基于可用带宽欧氏距离的LDoS攻击检测方法[J]. 山东大学学报(理学版), 2016, 51(9): 92-100.
[8] 蔡红云, 田俊峰. 云计算中的数据隐私保护研究[J]. 山东大学学报(理学版), 2014, 49(09): 83-89.
[9] 罗海燕, 吕萍, 刘林忠, 杨洵. 云环境下基于模糊粗糙AHP的企业信任综合评估[J]. 山东大学学报(理学版), 2014, 49(08): 111-117.
[10] 刘洋,秦丰林,葛连升. 云计算测量研究综述[J]. J4, 2013, 48(11): 27-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹慧荣,周伟,褚童,周洁. 政府征税与补贴Bertrand博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 52 -62 .
[2] 张克勇,李春霞,姚建明,李江鑫. 政府补贴下具风险规避的绿色供应链决策及协调[J]. 《山东大学学报(理学版)》, 2019, 54(11): 35 -51 .
[3] 刘双根,李丹丹,李潇. 基于青铜比例加法链的椭圆曲线标量乘算法[J]. 《山东大学学报(理学版)》, 2019, 54(11): 12 -19 .
[4] 熊兴国,路玲霞. 基于MV-代数的度量型模糊粗糙集[J]. 《山东大学学报(理学版)》, 2019, 54(11): 81 -89 .
[5] 吴正祥,李宝库. 考虑零售商社会比较行为的双渠道供应链均衡策略[J]. 《山东大学学报(理学版)》, 2019, 54(11): 20 -34 .
[6] 路正玉,周伟,于欢欢,赵娜. 考虑广告溢出效应的博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 63 -70 .