《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (4): 91-99.doi: 10.6040/j.issn.1671-9352.0.2018.126
黎娇,曹亚萌,李国全*
LI Jiao, CAO Ya-meng, LI Guo-quan*
摘要: 设Fq是q个元的有限域,其特征为p。设Fq[t]是Fq上的多项式环。以e(·)表示Fq上关于1/t的形式Laurent级数域的一个固定的非平凡特征。对于k∈N且k≥2, a,b∈Fq[t], m=(m1,…,mk)∈(Fq[t])k,定义完全指数和Sk(a/b,m)=∑d∈Fq[t], deg d<deg be(a/b∑ki=1mid i)。证明了下面的结果:假定b≠0, gcd(b,a)=1, gcd(b,m1,…,mk)=1,如果p>k,则 |Sk(a/b,m)|≤Ck|b|1-1/k,此处,C2=1;当k≥3时,Ck=(k-1)2(k-1)(2k)/(k-2)。
中图分类号:
[1] HUA L K. The additive prime number theory[M]. Beijing: [s.n.] , 1957. [2] VAUGHAN R C. The Hardy-Littlewood method[M]. Cambridge: Cambridge University Press, 1997. [3] CHEN J R. On Professor Huas estimate of exponential sums[J]. Sci Sinica, 1977, 20:711-719. [4] KUBOTA R. Warings problem for Fq[x] [J]. Diss Math, 1974, 117:1-60. [5] ZHAO X. A note on multiple exponential sums in function fields[J]. Finite Fields and Their Applications, 2012, 18:35-55. [6] LÊ T H. Problems and results on intersective sets[M] // Combinatorial and additive number theory: CANT 2011 and 2012, New York: Springer, 2014: 115-128. [7] LÊ T H, LIU Y R. On sets of polynomials whose difference set contains no squares[J]. Acta Arith, 2013, 161:127-143. [8] LIU Y R, WOOLEY T D. Warings problem in function fields[J]. J Reine Angew Math, 2010, 638:1-67. [9] WEIL A. On some exponential sums[J]. Proc Nat Acad Sci USA, 1948, 34:47-62. |
[1] | 尹华军1,2,张习勇1,2*. 特征为2的有限域上二次函数指数和计算的新方法[J]. J4, 2013, 48(3): 24-30. |
[2] | 郭晓艳. 关于短区间中D.H.Lehmer问题的均值[J]. J4, 2011, 46(12): 76-82. |
|