您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (5): 28-37.doi: 10.6040/j.issn.1671-9352.4.2021.145

• • 上一篇    

基于区间数层次分析法的损失函数确定方法

施极1,索中英2*   

  1. 1.空军工程大学研究生院, 陕西 西安 710000;2.空军工程大学基础部, 陕西 西安 710000
  • 发布日期:2022-05-27
  • 作者简介:施极(1998— ),男, 硕士研究生,研究方向为三支决策. E-mail:fangmu1998@163.com*通信作者简介:索中英(1981— ),女,副教授,硕士生导师,研究方向为三支决策、电子对抗. E-mail:suozhongying@sohu.com

Loss function determination method based on interval number analytic hierarchy process

SHI Ji1, SUO Zhong-ying2*   

  1. 1. Graduate School, Air Force Engineering University, Xian 710000, Shaanxi, China;
    2. Foundation Department, Air Force Engineering University, Xian 710000, Shaanxi, China
  • Published:2022-05-27

摘要: 针对基于决策粗糙集的三支决策模型中,损失函数难以确定以及其合理性问题,考虑到区间数层次分析法在处理多属性决策问题上的适应性、对矩阵误差的包容性等,给出了基于区间数层次分析法的损失函数确定步骤,证明了该损失函数的有效性,将其应用于空战目标威胁评估的实例中,并且从三支决策角度对评估结果进行了解释。实例分析表明,该方法确定的损失函数具有一定合理性,阈值对更加紧凑,减小了因数据错误导致的不确定性,降低了错误决策的风险,符合现代化信息空战的需求。

关键词: 三支决策, 决策粗糙集, 损失函数, 区间数层次分析法, 空战目标威胁评估

Abstract: In terms of three-way decision models based on decision-theoretic rough sets, the loss function is difficult to determine and rational. Considering the adaptability of interval-number analytic hierarchy process in dealing with multi-attribute decision-making problems and the tolerance of matrix error, the steps of determining the loss function based on interval-number analytic hierarchy process are given, and the effectiveness of the loss function is proved. It is applied to an example of air combat target threat assessment, and the assessment results are explained from the perspective of three decision-making. The example analysis shows that the loss function determined by this method is reasonable, the threshold pair is more compact, the uncertainty caused by data error is reduced, the risk of wrong decision is reduced, and it meets the needs of modern information air combat.

Key words: three-way decisions, decision-theoretic rough set, loss function, interval number analytic hierarchy process, air combat target threat assessment

中图分类号: 

  • O241
[1] 刘盾,姚一豫,李天瑞.三枝决策粗糙集[J].计算机科学,2011,38(1):246-250. LIU Dun, YAO Yiyu, LI Tianrui. Three-way decision-theoretic rough sets[J]. Computer Science, 2011, 38(1):246-250.
[2] PAWLAK Z. Rough sets[J]. International Journal of Computer, Information Sciences, 1982, 11(5):341-356.
[3] YAO Yiyu. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2009, 180(3):341-353.
[4] LIANG Decui, LI Dun. Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets[J]. Information Science, 2014, 276:186-203.
[5] 衷锦仪,叶东毅.基于模糊数风险最小化的拓展决策粗糙集模型[J].计算机科学,2014,41(3):50-54. ZHONG Jinyi, YE Dongyi. Extended decision-theoretic rough set models based on fuzzy minimum cost[J]. Computer Science, 2014, 41(3):50-54.
[6] 徐健锋,何宇凡,刘斓.三支决策代价目标函数的关系及推理研究[J].计算机科学,2018,45(6):176-182. XU Jianfeng, HE Yufan, LIU Lan. Relation and reasoning study for three-way decison cost objective functions[J]. Computer Science, 2018, 45(6):176-182.
[7] 贾修一,李伟湋,商琳,等.一种自适应求三枝决策中决策阈值的算法[J].电子学报,2011,39(11):2520-2525. JIA Xiuyi, LI Weiwei, SHANG Lin et al. An adaptive learning parameters algorithm in three-way decision-theoretic rough set model[J]. Acta Electronica Sinica, 2011, 39(11): 2520-2525.
[8] 吴育华,诸为,李新全,等.区间层次分析法-IAHP[J].天津大学学报(自然科学版), 1995,28(5):700-705. WU Yuhua, ZHU Wei, LI Xinquan, et al. Interval analytic hierarchy process-IAHP[J]. Journal of Tianjin University(Natural Science Edition), 1995, 28(5):700-705.
[9] 王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报,2009,32(7):1229-1246. WANG Guoyin, YAO Yiuyu, YU Hong. A survey on rough set theory and applications[J]. Chinese Journal of Computers, 2009, 32(7):1229-1246.
[10] 姚一豫,祁建军,魏玲.基于三支决策的形式概念分析、粗糙集与粒计算[J].西北大学学报(自然科学版),2018,48(4):477-487. YAO Yiyu, QI Jianjun, WEI Ling. Formal concept analysis, rough set analysis and granular computing based on three-way decisions[J]. Journal of Northwest University(Natural Science Edition), 2018, 48(4): 477-487.
[11] HU Baoqing. Three-way decisions space and three-way decisions[J]. Information Sciences, 2014, 281: 21-52.
[12] 于洪,王国胤,姚一豫.决策粗糙集理论研究现状与展望[J].计算机学报,2015,38(8):1628-1639. YU Hong, WANG Guoyin, YAO Yiyu. Current research and future perspectives on decision-theoretic rough sets[J]. Chinese Journal of Computers, 2015, 38(8):1628-1639.
[13] MUNIER N, HONTORIA E. Uses and limitations of the AHP method[M]. Berlin: Springer International Publishing, 2021.
[14] ATANU SENGUPTA, TAPAN KUMAR PAL. Fuzzy preference ordering of interval numbers in decision problems[M]. Berlin: Springer, 2009.
[15] 李波,高晓光.基于三支决策的空战应用研究 [M].北京:科学出版社,2020. LI Bo, GAO Xiaoguang. Application research of air combat based on three-way decision[M]. Beijing: Science Press, 2020.
[16] 陈覃霞,刘盾,梁德翠.粗糙集理论和信息熵的AHP改进方法[J].计算机科学与探索,2018,12(3):484-493. CHEN Qinxia, LIU Dun, LIANG Decui. Improved AHP approach based on rough set theory and information entropy[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(3):484-493.
[17] JIU Fan, LIU Peide. A novel three-way decision model under multiple-criteria environment[J]. Information Sciences, 2019, 471:29-51.
[1] 杨洁,罗天,李阳军. 基于TOPSIS的无标签序贯三支决策模型[J]. 《山东大学学报(理学版)》, 2022, 57(3): 41-48.
[2] 谭金源,刁宇峰,杨亮,祁瑞华,林鸿飞. 基于BERT-SUMOPN模型的抽取-生成式文本自动摘要[J]. 《山东大学学报(理学版)》, 2021, 56(7): 82-90.
[3] 李敏,杨亚锋,雷宇,李丽红. 基于可拓域变化代价最小的最优粒度选择[J]. 《山东大学学报(理学版)》, 2021, 56(2): 17-27.
[4] 林艳丽,刘晓东. 不完备序信息系统下的局部双量化决策粗糙集研究[J]. 《山东大学学报(理学版)》, 2020, 55(3): 89-97.
[5] 余鹰,吴新念,王乐为,张应龙. 基于标记相关性的多标记三支分类算法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 81-88.
[6] 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65.
[7] 刘国涛,张燕平,徐晨初. 一种优化覆盖中心的三支决策模型[J]. 山东大学学报(理学版), 2017, 52(3): 105-110.
[8] 张聪, 于洪. 一种三支决策软增量聚类算法[J]. 山东大学学报(理学版), 2014, 49(08): 40-47.
[9] 田海龙, 朱艳辉, 梁韬, 马进, 刘璟. 基于三支决策的中文微博观点句识别研究[J]. 山东大学学报(理学版), 2014, 49(08): 58-65.
[10] 张里博, 李华雄, 周献中, 黄兵. 人脸识别中的多粒度代价敏感三支决策[J]. 山东大学学报(理学版), 2014, 49(08): 48-57.
[11] 杜丽娜, 徐久成, 刘洋洋, 孙林. 基于三支决策风险最小化的风险投资评估应用研究[J]. 山东大学学报(理学版), 2014, 49(08): 66-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!