您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 8-13.doi: 10.6040/j.issn.1671-9352.0.2022.551

•   • 上一篇    下一篇

形式三角矩阵环上的Gorenstein FP-内射维数

张翠萍(),董娇娇*(),杨银银   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2022-10-19 出版日期:2024-02-20 发布日期:2024-02-20
  • 通讯作者: 董娇娇 E-mail:zhangcp@nwnu.edu.cu;1442806165@qq.com
  • 作者简介:张翠萍(1974—), 女, 副教授, 硕士生导师, 博士, 研究方向为环的同调理论. E-mail: zhangcp@nwnu.edu.cu

Gorenstein FP-injective dimensions over formal triangular matrix rings

Cuiping ZHANG(),Jiaojiao DONG*(),Yinyin YANG   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2022-10-19 Online:2024-02-20 Published:2024-02-20
  • Contact: Jiaojiao DONG E-mail:zhangcp@nwnu.edu.cu;1442806165@qq.com

摘要:

$T=\left(\begin{array}{ll}A & 0 \\U & B\end{array}\right)$是形式三角矩阵环, 其中AB是环, U是(B, A)-双模, $M=\left(\begin{array}{l}M_1 \\M_2\end{array}\right)_{\varphi^M}$是左T-模。证明若T是左GFPI封闭的左凝聚环,UA是平坦的, BU是有限表示的且pd(BU)<∞, 则以下式子成立:(1) max{G-FP-id(M1), G-FP-id(M2)}≤G-FP-id(M); (2) G-FP-id(M)≤max{G-FP-id(M1), G-FP-id(M2)+1};(3) max{lG-FP-id(A), lG-FP-id(B)}≤lG-FP-id(T)≤max{lG-FP-id(A), lG-FP-id(B)+1}。

关键词: 形式三角矩阵环, Gorenstein FP-内射模, Gorenstein FP-内射维数

Abstract:

Let $T=\left(\begin{array}{ll}A & 0 \\U & B\end{array}\right)$ be a formal triangular matrix ring, where A and B are rings and U is a (B, A)-bimodule. Let $M=\left(\begin{array}{l}M_1 \\M_2\end{array}\right)_{\varphi^M}$ be a left T-module. The results are proved that if T is a left GFPI-closed and left coherent ring, UA is flat, BU is finitely presented and pd(BU)<∞, then:(1) max{G-FP-id(M1), G-FP-id(M2)}≤G-FP-id(M); (2) G-FP-id(M)≤max{G-FP-id(M1), G-FP-id(M2)+1};(3) max{lG-FP-id(A), lG-FP-id(B)}≤lG-FP-id(T)≤max{lG-FP-id(A), lG-FP-id(B)+1}.

Key words: formal triangular matrix ring, Gorenstein FP-injective module, Gorenstein FP-injective dimension

中图分类号: 

  • O153.3
1 ENOCHS E E , JENDA O M G . Relative homological algebra[M]. Walter De Gruyter: De Gruyter Expositions in Math, 2000.
2 MAO Lixin , DING Nanqing . Gorenstein FP-injective and Gorenstein flat modules[J]. Journal of Algebra and Its Applications, 2008, 7 (4): 491- 506.
doi: 10.1142/S0219498808002953
3 GAO Zenghui , WANG Fanggui . Coherent rings and Gorenstein FP-injective modules[J]. Communications in Algebra, 2012, 40 (5): 1669- 1679.
doi: 10.1080/00927872.2011.554473
4 HAGHANY A , VARADARAJAN K . Study of formal triangular matrix rings[J]. Communications in Algebra, 1999, 27 (11): 5507- 5525.
doi: 10.1080/00927879908826770
5 HAGHANY A , VARADARAJAN K . Study of modules over formal triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2000, 147 (1): 41- 58.
doi: 10.1016/S0022-4049(98)00129-7
6 ZHANG Pu . Gorenstein projective modules and symmetric recollements[J]. Journal of Algebra, 2013, 388, 65- 80.
doi: 10.1016/j.jalgebra.2013.05.008
7 MAO Lixin . Duality pairs and FP-injective modules over formal triangular matrix rings[J]. Communications in Algebra, 2020, 48 (12): 5296- 5310.
doi: 10.1080/00927872.2020.1786837
8 杨银银, 张翠萍. 形式三角矩阵环上的Gorenstein FP-内射模[J]. 山东大学学报(理学版), 2022, 57 (2): 38- 44.
YANG Yinyin , ZHANG Cuiping . Gorenstein FP-injective over formal triangular matrix rings[J]. Journal of Shandong University (Natural Science), 2022, 57 (2): 38- 44.
9 杨燕妮, 杨刚. 关于Gorenstein FP-内射模及维数[J]. 四川师范大学学报(自然科学版), 2016, 39 (1): 47- 50.
YANG Yanni , YANG Gang . On Gorenstein FP-injective module and dimensions[J]. Journal of Sichuan Normal University (Natural Science), 2016, 39 (1): 47- 50.
10 HAGHANY A , MAZROOEI M , VEDADI M R . Pure projectivity and pure injectivity over formal triangular matrix rings[J]. Journal of Algebra and Its Applications, 2012, 11 (6): 1- 13.
11 MAO Lixin . Cotorsion pairs and approximation classes over formal triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2020, 224, 1- 9.
doi: 10.1016/j.jpaa.2019.04.011
[1] 杨银银,张翠萍. 形式三角矩阵环上的 Gorenstein FP-内射模[J]. 《山东大学学报(理学版)》, 2022, 57(2): 38-44.
[2] 牛韶花,杨刚. 形式三角矩阵环上的n-Gorenstein投射模[J]. 《山东大学学报(理学版)》, 2022, 57(10): 44-49.
[3] 吴德军,周慧. 三角矩阵环上Gorenstein FP-内射模的刻画[J]. 《山东大学学报(理学版)》, 2021, 56(8): 86-93.
[4] 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45.
[5] 黄述亮. 形式三角矩阵环上导子的几个结果[J]. 山东大学学报(理学版), 2015, 50(10): 43-46.
[6] 陈文静,刘仲奎. 关于n-强 Gorenstein FP-内射模的注记[J]. 山东大学学报(理学版), 2014, 49(04): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭兰兰1,2,耿介1,石硕1,3,苑飞1,雷丽1,杜广生1*. 基于UDF方法的阀门变速关闭过程中的#br# 水击压强计算研究[J]. 山东大学学报(理学版), 2014, 49(03): 27 -30 .
[2] 史开泉. 信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(04): 1 -17 .
[3] 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33 -37 .
[4] 孟祥波1,张立东1,杜子平2. 均值-方差标准下带跳的保险公司投资与再保险策略[J]. 山东大学学报(理学版), 2014, 49(05): 36 -40 .
[5] 彭振华,徐义红*,涂相求. 近似拟不变凸集值优化问题弱有效元的最优性条件[J]. 山东大学学报(理学版), 2014, 49(05): 41 -44 .
[6] 袁晖坪 . 行(列)对称矩阵的Schur分解和正规阵分解[J]. J4, 2007, 42(10): 123 -126 .
[7] 邹国平1,马儒宁1,丁军娣2,钟宝江3. 基于显著性加权颜色和纹理的图像检索[J]. J4, 2010, 45(7): 81 -85 .
[8] 陈 莉 . 不确定奇异系统的鲁棒故障诊断滤波器设计[J]. J4, 2007, 42(7): 62 -65 .
[9] 伍芸1,2, 韩亚蝶1. 一类临界位势非线性椭圆型方程非平凡解的存在性[J]. J4, 2013, 48(4): 91 -94 .
[10] 樊剑武 赵晓华 田乃硕 贠小青. 带有负顾客的M/M/1/N单重工作休假排队系统[J]. J4, 2009, 44(8): 68 -73 .