《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 14-21, 31.doi: 10.6040/j.issn.1671-9352.0.2022.632
摘要:
利用矩阵弱相似及矩阵对弱相似的相关理论, 在复数域
中图分类号:
1 |
BEATTIE M . A direct sum decomposition for the Brauer group of H-module algebras[J]. Journal of Algebra, 1976, 43 (2): 686- 693.
doi: 10.1016/0021-8693(76)90134-4 |
2 |
MOLNAR R K . Semi-direct products of Hopf algebras[J]. Journal of Algebra, 1977, 47 (1): 29- 51.
doi: 10.1016/0021-8693(77)90208-3 |
3 |
CAENEPEEL S , VAN OYSTAEYEN F , ZHANG Y H . Quantum Yang-Baxter module algebras[J]. K-Theory, 1994, 8 (3): 231- 255.
doi: 10.1007/BF00960863 |
4 |
CAENEPEEL S , VAN OYSTAEYEN F , ZHANG Y H . The Brauer group of Yetter-Drinfeld module algebras[J]. Transactions of the American Mathematical Society, 1997, 349 (9): 3737- 3771.
doi: 10.1090/S0002-9947-97-01839-4 |
5 | DUPLIJ S , SINELSHCHIKOV S . Classifications of Uq(sl2)-module algebra structures on the quantum plane[J]. Journal of Mathematical Physics, Analysis, Geometry, 2010, 6 (4): 406- 430. |
6 |
CHEN Huixiang , ZHANG Yinhuo . Four-dimensional Yetter-Drinfeld module algebras over H4[J]. Journal of Algebra, 2006, 296 (2): 582- 634.
doi: 10.1016/j.jalgebra.2005.08.011 |
7 | ZHAO Shiyin, WANG Yin, CHEN Xiaojuan, et al. The kS3-module algebra structures on M3(k)[EB/OL]. Beijing: Sciencepaper Online(2013-06-09)[2022-09-07]. http://www.paper.edu.cn/releasepaper/content/201306-142. |
8 | 赵士银, 周克元. 二阶全矩阵代数的模代数结构[J]. 山东大学学报(理学版), 2013, 48 (8): 24- 29. |
ZHAO Shiyin , ZHOU Keyuan . The module algebra structures on M2(k)[J]. Journal of Shandong University(Natural Science), 2013, 48 (8): 24- 29. | |
9 | 高凤霞, 高雪琴, 杨士林. 二阶全矩阵代数的H8-模代数结构[J]. 吉林大学学报(理学版), 2015, 53 (5): 887- 892. |
GAO Fengxia , GAO Xueqin , YANG Shilin . H8-module algebra structures on M2(k)[J]. Journal of Jilin University(Science Edition), 2015, 53 (5): 887- 892. | |
10 | 高凤霞, 杨士林. 3阶全矩阵代数的H8-模代数结构[J]. 数学年刊, 2017, 38A (2): 215- 226. |
GAO Fengxia , YANG Shilin . The H8-module algebra structures on M2(k)[J]. Chinese Annals of Mathematics, 2017, 38A (2): 215- 226. | |
11 | NASTASESCU C , VAN OYSTAEYEN F . Methods of graded rings[M]. Berlin: Springer, 2004: 261- 269. |
12 | 魏丰, 史荣昌, 闫晓霞. 矩阵分析学习指导[M]. 北京: 北京理工大学出版社, 2005: 51- 65. |
WEI Feng , SHI Rongchang , YAN Xiaoxia . Matrix analysis learning guide[M]. Beijing: Beijing Institute of Technology Press, 2005: 51- 65. | |
13 | 高雪琴. 非交换非余交换8维半单Hopf代数的模代数结构[D]. 北京: 北京工业大学, 2015. |
GAO Xueqin. The module algebra structures of non-commutative and non-cocommutative 8-dimensional semisimple Hopf algebra[D]. Beijing: Beijing Institute of Technology, 2015. | |
14 | MONTGOMERY S . Hopf algebras and their actions on rings[M]. Providence: American Mathematical Society, 1993: 40- 43. |
[1] | 谭婕,张良,郭继东. 二面体群到有限群的同态个数[J]. 《山东大学学报(理学版)》, 2023, 58(6): 31-34. |
[2] | 张薇,赖吉娜,郭继东,张良. 一类有限2群与二面体群之间的同态个数[J]. 《山东大学学报(理学版)》, 2023, 58(3): 7-13. |
[3] | 曹刘峰. 二面体群Grothendieck代数的Maschke定理[J]. 《山东大学学报(理学版)》, 2023, 58(2): 44-50. |
[4] | 谢伟,郭继东. 中心二面体群与二面体群之间的同态个数[J]. 《山东大学学报(理学版)》, 2020, 55(8): 80-86. |
[5] | 赖吉娜,郭继东. 一类非交换群与二面体群之间的同态个数[J]. 《山东大学学报(理学版)》, 2020, 55(12): 30-36. |
[6] | 李红霞,郭继东,海进科. 二面体群到一类亚循环群之间的同态个数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 34-40. |
[7] | 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110. |
[8] | 周楠,张涛,鹿道伟. Monoidal Hom-双代数上的L-R-smash积[J]. 山东大学学报(理学版), 2017, 52(2): 5-8. |
[9] | 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15. |
[10] | 吴紫娟,陈园园,张良云. Hopf拟群上的拟重模代数与Yetter-Drinfeld 拟模代数[J]. 山东大学学报(理学版), 2016, 51(10): 28-33. |
[11] | 贾玲, 陈笑缘. Yetter-Drinfeld Hopf代数的对偶定理[J]. 山东大学学报(理学版), 2015, 50(12): 98-101. |
[12] | 陈华喜, 张崔斌, 董丽红. 广义Lie代数的Kegel定理[J]. 山东大学学报(理学版), 2014, 49(10): 38-44. |
[13] | 赵士银1,2,周克元1. 二阶全矩阵代数的模代数结构[J]. J4, 2013, 48(8): 24-29. |
[14] | 陈华喜1,张晓辉2,许庆兵3. Yetter-Drinfeld模范畴上的弱余模代数结构定理[J]. J4, 2013, 48(12): 14-17. |
[15] | 余维燕1,2,张建华1. 完全矩阵代数上的广义Jordan导子[J]. J4, 2010, 45(4): 86-89. |
|