《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (3): 1-13.doi: 10.6040/j.issn.1671-9352.7.2023.787
• • 下一篇
王静红1,2,3(),吴芝冰1,黄鹏1,杨家腾1,李笔4,*()
Jinghong WANG1,2,3(),Zhibing WU1,Peng HUANG1,Jiateng YANG1,Bi LI4,*()
摘要:
针对信息网络的表示学习进行研究, 提出了一种基于元路径信息融合的异质图神经网络(metapath attribute fusion graph neural network, MAFGNN), 通过在异质网络中引入元路径之前将目标节点的邻居信息包括元路径信息融入到节点中, 实现目标节点和邻居信息的融合。该方法首先将不同类型的节点属性特征进行维度转换便于后续的融合操作, 通过计算目标节点和邻居节点权重值完成目标节点信息的融合操作。然后根据特定元路径对目标节点进行融合, 最后在不同元路径间实现不同语义信息的融合操作。在多个异质信息数据集上进行实验表明, MAFGNN模型在处理异质网络节点嵌入方面相比于最先进的基准实验有最好的性能和更加准确的预测结果。
中图分类号:
1 | ATWOOD J , TOWSLEY D . Diffusion-convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2016, 29, 2001- 2009. |
2 | SHI Chuan , LI Yitong , ZHANG Jiawei , et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 29 (1): 17- 37. |
3 | SUN Yizhou , HAN Jiawei . Mining heterogeneous information networks: a structural analysis approach[J]. Association for Computing Machinery, 2013, 14 (2): 20- 28. |
4 | CUI Peng , WANG Xiao , PEI Jian , et al. A survey on network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31 (5): 833- 852. |
5 | CAO B, LIU N N, YANG Q. Transfer learning for collective link prediction in multiple heterogenous domains[C]//WROBEL S. Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel: DAUMÉ Ⅲ H, 2010: 159-166. |
6 | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-09-07)[2023-09-23]. https://arxiv.org/abs/1301.3781. |
7 | PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//MACSKASSY S. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2014: 701-710. |
8 | DONG Y, CHAWLA N V, SWAMI A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//MATWIN S. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, Canada: Association for Computing Machinery, 2017: 135-144. |
9 |
SUN Yizhou , HAN Jiawei , YAN Xifeng , et al. Pathsim: meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011, 4 (11): 992- 1003.
doi: 10.14778/3402707.3402736 |
10 | LEE S, PARK C, YU H. BHIN2vec: balancing the type of relation in heterogeneous information network[C]// ZHU Wenwu. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: Association for Computing Machinery, 2019: 619-628. |
11 | WANG X, JI H, SHI C, et al. Heterogeneous graph attention network[C]// LING L. The World Wide Web Conference. New York: Association for Computing Machinery, 2019: 2022-2032. |
12 | FU Xinyu, ZHANG Jiani, MENG Ziqiao, et al. MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding[C]//HUANG Y N. Proceedings of The Web Conference 2020. Taipei: Association for Computing Machinery, 2020: 2331-2341. |
13 | WANG Xiao , LU Yuanfu , SHI Chuan , et al. Dynamic heterogeneous information network embedding with meta-path based proximity[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34 (3): 1117- 1132. |
14 | XUE Hansheng, YANG Luwei, JIANG Wen, et al. Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal RNN[C]//BIE T D. Machine Learning and Knowledge Discovery in Databases. Ghent, Belgium: Springer, 2020: 282-298. |
15 | MIKOLOV T , SUTSKEVER I , CHEN K , et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013, 26, 3111- 3119. |
16 | TANG Jian, QU Meng, WANG Mingzhe, et al. LINE: large-scale information network embedding[C]//GANGEMI A. Proceedings of the 24th International Conference on World Wide Web. Florence, Italy: Association for Computing Machinery, 2015: 1067-1077. |
17 | RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. Struc2vec: learning node representations from structural identity[C]//MATWIN S. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, Canada: Association for Computing Machinery, 2017: 385-394. |
18 | WU Zonghan , PAN Shirui , CHEN Fengwen , et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (1): 4- 24. |
19 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22)[2023-09-23]. https://arxiv.org/abs/1609.02907. |
20 | VELI C ˇ KOVI C ' P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04)[2023-09-23]. https://arxiv.org/abs/1710.10903. |
21 | VASWANI A , SHAZEER N , PARMAR N , et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30, 6000- 6010. |
22 | FU T, LEE W C, LEI Z. HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning[C]//LIM E P. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: Association for Computing Machinery, 2017: 1797-1806. |
23 | SHANG Jingbo, QU Meng, LIU Jialu, et al. Meta-path guided embedding for similarity search in large-scale heterogeneous information networks[EB/OL]. (2016-10-31)[2023-09-23]. https://arxiv.org/abs/1610.09769. |
24 | GUAN Mengya, CAI Xinjun, SHANG Jiaxing, et al. HMSG: heterogeneous graph neural network based on metapath subgraph learning[EB/OL]. (2021-09-07)[2023-09-23]. https://arxiv.org/abs/2109.02868. |
25 | ZHOU Sheng, BU Jiajun, WANG Xin, et al. HAHE: hierarchical attentive heterogeneous information network embedding[EB/OL]. (2019-05-14)[2023-09-23]. https://arxiv.org/abs/1902.01475. |
26 | ZHANG Chuxu, SONG Dongjin, HUANG Chao, et al. Heterogeneous graph neural network[C]//TEREDESAI A. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage, USA: Association for Computing Machinery, 2019: 793-803. |
27 | BOLYA D, FU C Y, DAI X L, et al. Hydra attention: efficient attention with many heads[EB/OL]. (2023-02-12)[2023-09-23]. https://arxiv.org/abs/2209.07484. |
[1] | 刘梦迪,张贤勇,莫智文. 基于改进距离测度的概率犹豫模糊多属性群决策新方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 118-126. |
[2] | 那宇嘉,谢珺,杨海洋,续欣莹. 融合上下文的知识图谱补全方法[J]. 《山东大学学报(理学版)》, 2023, 58(9): 71-80. |
[3] | 卢婵,郭军军,谭凯文,相艳,余正涛. 基于文本指导的层级自适应融合的多模态情感分析[J]. 《山东大学学报(理学版)》, 2023, 58(12): 31-40, 51. |
[4] | 史开泉,李守伟. 分离模糊集合(A(-overF),AF)与模糊信息智能融合[J]. 《山东大学学报(理学版)》, 2022, 57(7): 1-13. |
[5] | 王静红,梁丽娜,李昊康,王熙照. 基于标记注意力机制的社区发现算法[J]. 《山东大学学报(理学版)》, 2022, 57(12): 1-12. |
[6] | 陈淑珍,李守伟,史开泉. 信息融合-分离与隐性属性的显性特征[J]. 《山东大学学报(理学版)》, 2022, 57(11): 1-9. |
[7] | 鲍亮,陈志豪,陈文章,叶锴,廖祥文. 基于双重多路注意力匹配的观点型阅读理解[J]. 《山东大学学报(理学版)》, 2021, 56(3): 44-53. |
[8] | 唐光远,郭军军,余正涛,张亚飞,高盛祥. 基于BERT与法条知识驱动的法条推荐方法[J]. 《山东大学学报(理学版)》, 2021, 56(11): 24-30. |
[9] | 许侃,刘瑞鑫,林鸿飞,刘海峰,冯娇娇,李家平,林原,徐博. 基于异质网络嵌入的学术论文推荐方法[J]. 《山东大学学报(理学版)》, 2020, 55(11): 35-45. |
[10] | 郝长盈,兰艳艳,张海楠,郭嘉丰,徐君,庞亮,程学旗. 基于拓展关键词信息的对话生成模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 68-76. |
[11] | 张秀全,李小朝. P-信息融合与它的P-矩阵推理智能生成[J]. 山东大学学报(理学版), 2017, 52(4): 93-99. |
[12] | 张景晓, 徐凤生. P-集合的属性函数与P-信息融合的属性合取特征及应用[J]. 山东大学学报(理学版), 2015, 50(10): 19-26. |
[13] | 张凌1,汤积华1,史开泉2. 内P-信息融合与它的属性合取特征[J]. 山东大学学报(理学版), 2014, 49(2): 93-97. |
|