《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (9): 71-86.doi: 10.6040/j.issn.1671-9352.0.2024.039
• • 上一篇
王文晶1, 刘忠宝2*,万广文2,胡迦南3
WANG Wenjing1, LIU Zhongbao2*, WAN Guangwen2, HU Jianan3
摘要: 在精准刻画中文长篇小说情节的基础上,探讨中文长篇小说高潮章节识别方法。该方法由关键要素抽取和高潮章节识别2部分组成,其中前者包括观点段落、非观点段落、章节关键词、主要角色等关键要素抽取,后者在建立章节情节描述矩阵的基础上,引入BiGRU模型与多头注意力机制,实现中文长篇小说高潮章节识别。金庸小说语料集上的比较实验表明,与朴素贝叶斯(naive Bayesian, NB)、支持向量机(support vector machine, SVM)、预训练模型Roberta-large、双向长短时记忆网络(bi-directional long short-term memory, BiLSTM)等模型相比,本文所提方法具有更优的识别性能。消融实验验证所提方法主要组成部分的有效性。
中图分类号:
[1] 肖天久,刘颖. 基于聚类和分类的金庸与古龙小说风格分析[J]. 中文信息学报,2015,29(5):167-177. XIAO Tianjiu, LIU Ying. A styistic analysis of Jin Yongs and Gu Longs fictions based on text clustering and classification[J]. Journal of Chinese Information Processing, 2015, 29(5):167-177. [2] 姚睿琦,张辉,姚云洪. 社会网络分析方法在金庸小说人物关系中的应用研究[J]. 文献与数据学报,2021,3(3):68-80. YAO Ruiqi, ZHANG Hui, YAO Yunhong. Research on application of social network analysis on character relationships in Jin Yongs novels[J]. Journal of Library and Data, 2021, 3(3):68-80. [3] 张旋,梁循,李志宇,等. 金庸小说中主角复杂爱情模式的识别与分析[J]. 中文信息学报,2019,33(4):109-119. ZHANG Xuan, LIANG Xun, LI Zhiyu,et al. Identification and analysis of love relationships of protagonists in Jin Yongs fictions[J]. Journal of Chinese Information Processing, 2019, 33(4):109-119. [4] 邰沁清,夏恩赏,饶高琦,等. 数字人文视角下的金庸文本挖掘研究[J]. 数字人文,2020,4:115-136. TAI Qinqing, XIA Enshang, RAO Gaoqi, et al. Research on Jin Yong with text mining from the perspective of digital humanities[J]. Digital Humanities, 2020, 4:115-136. [5] LIU Ying, XIAO Tianjin. A stylistic analysis for Gu Longs Kung Fu novels[J]. Journal of Quantitative Linguistics, 2020, 27(1):32-61. [6] XIA Enshan, TAI Qingqing, LI Qi, et al. Digital humanities research of Jin Yongs works based on quantitative linguistics[J]. International Journal of Knowledge and Language, 2021, 12(1):1-10. [7] ZHANG Le, WANG Shuai, LIU Bing. Deep learning for sentiment analysis: a survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(4):e1253. [8] KIM E, KLINGER R. An analysis of emotion communication channels in fan-fiction: towards emotional storytelling[C] // Proceedings of the Second Workshop on Storytelling. Florence:ACL, 2019:56-64. [9] ZEHE A, BECKER M, HETTINGER L, et al. Prediction of happy endings in German novels based on sentiment information[C] //Proceedings of the 3rd Workshop on Interactions between Data Mining and Natural Language. Riva del Garda:[s.n.] , 2016:9-16. [10] MOHAMMAD S M, TURNEY P. NRC emotion lexicon[EB/OL].(2011-07-10)[2024-01-30]. http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm. [11] HORTON T, TAYLOR K, YU B, et al. “Quite right, dear and interesting”: seeking the sentimental in nineteenth century American fiction[C] // Digital Humanities Conferences. Paris:[s.n.] , 2006:81-82. [12] YU Bei. An evaluation of text classification methods for literary study[J]. Literary and Linguistic Computing, 2008, 23(3): 327-343. [13] 梁循. 基于深度学习的社会信息挖掘应用实例分析[M]. 北京:科学出版社,2020. LIANG Xun. Application instance analysis of social information mining based on deep learning[M]. Beijing: Science Press, 2020. [14] 宋琦. 武侠小说从“民国旧派”到“港台新派”叙事模式的变迁[D]. 济南:山东大学,2010. SONG Qi. The narrative model changes of martial arts novels from “old school during the republican period” to “new breed of Hong Kong and Taiwan”[D]. Jinan:Shandong University, 2010. [15] 曹正文.中国侠文化史[M].上海:上海书店出版社, 2014. CAO Zhengwen. History of Chinese chivalrous culture[M]. Shanghai: Shanghai Bookstore Publishing House, 2014. [16] HAN H, CHOI J D. The stem cell hypothesis: dilemma behind multi-task learning with transformer encoders[C] // Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Punta Cana: ACL, 2021:5555-5577. [17] KUMAR A, VEPA J. Gated mechanism for attention based multi modal sentiment analysis[C] // Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington, D.C.: IEEE, 2020:4477-448. [18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //31st Conference on Neural Information Processing Systems(NIPS 2017). Long Beach: ACM, 2017:5998-6008. [19] 过临朋. 基于NLP的小说人物属性抽取系统[D]. 北京:北京邮电大学,2021. GUO Linpeng. A NLP-based novel character attribute extraction system[D]. Beijing: Beijing University of Posts and Telecommunications, 2021. [20] XU Liang, HU Hai, ZHANG Xuanwei, et al. CLUE: a Chinese language understanding evaluation benchmark[C] //Proceedings of the 28th International Conference on Computational Linguistics. Barcelona: ACL, 2020:4762-4772. [21] BAL M. Narratology: introduction to the theory of narrative[M]. Toronto: University of Toronto Press, 2009. |
[1] | 梁霞,郭洁. 基于在线评论的线上教学平台选择方法[J]. 《山东大学学报(理学版)》, 2024, 59(9): 108-118. |
[2] | 黎超,廖薇. 基于医疗知识驱动的中文疾病文本分类模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 122-130. |
[3] | 纪杰,孙承杰,单丽莉,尚伯乐,林磊. 基于提示学习的电信网络诈骗案件分类方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 113-121. |
[4] | 罗奇,苟刚. 基于聚类和群组归一化的多模态对话情绪识别[J]. 《山东大学学报(理学版)》, 2024, 59(7): 105-112. |
[5] | 赵峰叙,王健,林原,林鸿飞. 面向排序学习的概率分布优化模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 95-104. |
[6] | 黄兴宇,赵明宇,吕子钰. 面向图神经网络表征学习的类别知识探针[J]. 《山东大学学报(理学版)》, 2024, 59(7): 85-94. |
[7] | 桂梁,徐遥,何世柱,张元哲,刘康,赵军. 基于动态邻居选择的知识图谱事实错误检测方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 76-84. |
[8] | 咸宁,范意兴,廉涛,郭嘉丰. 融合多重特征的噪声网络对齐方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 64-75. |
[9] | 孙承杰,李宗蔚,单丽莉,林磊. 一种基于核心论元的篇章级事件抽取方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 53-63. |
[10] | 刘沛羽,姚博文,高泽峰,赵鑫. 基于矩阵乘积算符表示的序列化推荐模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 44-52, 104. |
[11] | 邵伟,朱高宇,于雷,郭嘉丰. 高维数据的降维与检索算法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 27-43. |
[12] | 杨纪元,马沐阳,任鹏杰,陈竹敏,任昭春,辛鑫,蔡飞,马军. 基于自监督的预训练在推荐系统中的研究[J]. 《山东大学学报(理学版)》, 2024, 59(7): 1-26. |
[13] | 陈海粟,廖佳纯,姚思诚. 政府开放数据中个人信息披露识别与统计方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 95-106. |
[14] | 温欣,李德玉. 基于属性加权的ML-KNN方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 107-117. |
[15] | 曾雪强,孙雨,刘烨,万中英,左家莉,王明文. 基于情感分布的emoji嵌入式表示[J]. 《山东大学学报(理学版)》, 2024, 59(3): 81-94. |
|