《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 76-84.doi: 10.6040/j.issn.1671-9352.5.2025.118
• • 上一篇
邹峥1,雷雨晟1,刘石坚2,王定一3,邱学炜1,史雯雯2,周校通2
ZOU Zheng1, LEI Yusheng1, LIU Shijian2, WANG Dingyi3, QIU Xuewei1, SHI Wenwen2, ZHOU Xiaotong2
摘要: 提出分区式微方向感知的自动形态分析方法,采用分区式思想细化目标,间接增加形态差异的显著性。选择旋转矩形表征目标和更多方向信息,在识别时引入多层局部空间感知模块,将方向与特征直接关联,同时融合双支空间金字塔模块,强化浅层特征复用,提高了计算效率。将主流旋转目标检测方法、关键点检测方法与本文方法对比,结果证明在提取高干扰的小目标的方向和位置方面,本文方法具有更好的精确度和鲁棒性。
中图分类号:
| [1] 黄复生,朱世模,平正明,等. 中国动物志(昆虫纲)[M]. 北京:科学出版社,2000:1-961. HUANG Fusheng, ZHU Shimo, PING Zhengming, et al. Fauna sinica(insecta)[M]. Beijing: Science Press, 2000:1-961. [2] 白明,杨星科. 三维几何形态学概述及其在昆虫学中的应用[J]. 昆虫学报,2014,57(9):1105-1111. BAI Ming, YANG Xingke. A review of three-dimensional(3D)geo-metric morphometrics and its application in entomology[J]. Acta Entomologica Sinica, 2014, 57(9):1105-1111. [3] HOANG H N, HAI B H, PHUONG H L, et al. A lightweight keypoint matching framework for insect wing morphometric landmark detection[J]. Ecological Informatics, 2022, 70:101694. [4] JOÃO P R, WALTER G, ALICE M P. Automatic wing geometric morphometrics classification of honey bee(apis mellifera)subspecies using deep learning for detecting land-marks[J]. Big Data and Cognitive Computing, 2022, 6(3):70-70. [5] WANG Zejun, ZHANG Shihao, CHEN Lijiao, et al. Microscopic insect pest detection in tea plantations: improved YOLOv8 model based on deep learning[J]. Agriculture, 2024, 14(10):1739. [6] BERECIARTUA-PÉREZ A, GOMEZ L, PICON A, et al. Insect counting through deep learning-based density maps estimation[J]. Computers and Electronics in Agriculture, 2022, 197:106933. [7] BUSCHBACHER K, AHRENS D, ESPELAND M, et al. Image-based species identification of wild bees using convolutional neural networks[J]. Ecological Informatics, 2020, 55:101017. [8] BADGUJAR C M, ARMSTRONG P R, GERKEN A R, et al. Identifying common stored product insects using automated deep learning methods[J]. Journal of Stored Products Research, 2023, 103:102166. [9] VENEGAS P, CALDERON F, RIOFRÍO D, et al. Automatic ladybird beetle detection using deep-learning models[J]. PLoS One, 2021, 16(6):e0253027. [10] TETILA E C, MACHADO B B, MENEZES G V, et al. A deep-learning approach for automatic counting of soybean insect pests[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10):1837-1841. [11] 唐灿,唐亮贵,刘波. 图像特征检测与匹配方法研究综述[J]. 南京信息工程大学学报(自然科学版),2020,12(3):261-273. TANG Can, TANG Lianggui, LIU Bo. A survey of image feature detection and matching methods[J]. Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2020, 12(3):261-273. [12] 江铁,朱桂斌,孙奥,等. 特征点提取算法性能分析研究[J]. 科学技术与工程,2012,12(30):7924-7930. JIANG Tie, ZHU Guibin, SUN Ao, et al. Performance analysis of feature point detectors[J]. Science Technology and Engineering, 2012, 12(30):7924-7930. [13] YANG Jieren, ZHANG xinying, LUO Peng. A summary of feature point detection based on image mosaics[J]. Electronic Test, 2021(6):53-54. [14] LE V, BEURTON-AIMAR M, ZEMMARI A, et al. Automated land-marking for insects morphometric analysis using deep neural networks[J]. Ecological Informatics, 2020, 60:101175. [15] GELDENHUYS D S, JOSIAS S, BRINK W, et al. Deep learning approaches to landmark detection in tsetse wing images[J]. PLOS Computational Biology, 2023, 19(6):e1011194. [16] 安胜彪,娄慧儒,陈书旺,等. 基于深度学习的旋转目标检测方法研究进展[J]. 电子测量技术,2021,44(21):168-17. AN Shengbiao, LOU Huiru, CHEN Shuwang, et al. Research progress of rotating target detection methods based on deep learning[J]. Electronic Measurement Technology, 2021, 44(21):168-178. [17] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645. [18] 陈天鹏,胡建文. 基于深度学习的遥感图像旋转目标检测研究综述[J]. 计算机应用研究,2024,41(2):329-340. CHEN Tianpeng, HU Jianwen. Overview of oriented object detection based on deep learning in remote sensing[J]. Application Research of Computers, 2024, 41(2):329-340. [19] LONG Wen, YU Cheng, YI Fang, et al. A comprehensive survey of oriented object detection in remote sensing images[J]. Expert Systems with Applications, 2023, 224:16-26. [20] 王旭,吴艳霞,张雪,等. 计算机视觉下的旋转目标检测研究综述[J]. 计算机科学,2023,50(8):79-92. WANG Xiu, WU Yanxia, ZHANG Xue, et al. Survey of rotating object detection research in computer vision[J]. Computer Science, 2023, 50(8):79-92. [21] YUAN Shuai, QIN Hanlin, YAN Xiang, et al. Sctransnet: spatial-channel cross transformer network for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62(10):1-15. [22] YANG Zhigang, XIA Xiangyu, LIU Yiming, et al. LPST-Det: local-perception-enhanced swin transformer for sar ship detection[J]. Remote Sensing, 2024, 16(3):18. [23] KONG Tao, SUN Fuchun, LIU Huaping, et al. Foveabox: beyond anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29:7389-7398. [24] QIAN Wen, YANG Xue, PENG Silong, et al. Learning modulated loss for rotated object detection[EB/OL].(2019-11-09)[2025-08-15]. https://doi.org/10.48550/arXiv.1911.08299. [25] HAN Jiaming, DING Jian, LI Jie, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 10(99):1-11. [26] 中华人民共和国海关总署. SN/T 1105-2019大家白蚁检疫鉴定方法[S]. 北京:中华人民共和国海关总署,2019. General Administration of Customs of the Peoples Republic of China. SN/T 1105-2019 Detection and identification of coptotermes curvignathus Holmgren[S]. Beijing: General Administration of Customs of the Peoples Republic of China, 2019. [27] HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE, 2021:13708-13717. [28] WANG Chenyao, LIAO Hongyuan, WU Yuehua, et al. CSPNET: a new backbone that can enhance learning capability of CNN[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE, 2020:390-404. |
| [1] | 梁霞,郭洁. 基于在线评论的线上教学平台选择方法[J]. 《山东大学学报(理学版)》, 2024, 59(9): 108-118. |
| [2] | 黎超,廖薇. 基于医疗知识驱动的中文疾病文本分类模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 122-130. |
| [3] | 纪杰,孙承杰,单丽莉,尚伯乐,林磊. 基于提示学习的电信网络诈骗案件分类方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 113-121. |
| [4] | 罗奇,苟刚. 基于聚类和群组归一化的多模态对话情绪识别[J]. 《山东大学学报(理学版)》, 2024, 59(7): 105-112. |
| [5] | 赵峰叙,王健,林原,林鸿飞. 面向排序学习的概率分布优化模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 95-104. |
| [6] | 黄兴宇,赵明宇,吕子钰. 面向图神经网络表征学习的类别知识探针[J]. 《山东大学学报(理学版)》, 2024, 59(7): 85-94. |
| [7] | 桂梁,徐遥,何世柱,张元哲,刘康,赵军. 基于动态邻居选择的知识图谱事实错误检测方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 76-84. |
| [8] | 咸宁,范意兴,廉涛,郭嘉丰. 融合多重特征的噪声网络对齐方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 64-75. |
| [9] | 孙承杰,李宗蔚,单丽莉,林磊. 一种基于核心论元的篇章级事件抽取方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 53-63. |
| [10] | 刘沛羽,姚博文,高泽峰,赵鑫. 基于矩阵乘积算符表示的序列化推荐模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 44-52, 104. |
| [11] | 邵伟,朱高宇,于雷,郭嘉丰. 高维数据的降维与检索算法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 27-43. |
| [12] | 杨纪元,马沐阳,任鹏杰,陈竹敏,任昭春,辛鑫,蔡飞,马军. 基于自监督的预训练在推荐系统中的研究[J]. 《山东大学学报(理学版)》, 2024, 59(7): 1-26. |
| [13] | 陈海粟,廖佳纯,姚思诚. 政府开放数据中个人信息披露识别与统计方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 95-106. |
| [14] | 温欣,李德玉. 基于属性加权的ML-KNN方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 107-117. |
| [15] | 曾雪强,孙雨,刘烨,万中英,左家莉,王明文. 基于情感分布的emoji嵌入式表示[J]. 《山东大学学报(理学版)》, 2024, 59(3): 81-94. |
|
||