《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (11): 52-62.doi: 10.6040/j.issn.1671-9352.0.2018.530
曹慧荣1,周伟1*,褚童2,周洁1
CAO Hui-rong 1, ZHOU Wei1*, CHU Tong2, ZHOU Jie1
摘要: 在政府同时实施征税与补贴政策的背景下,基于有限理性建立了动态Bertrand博弈模型。利用Jury条件分析了系统平衡点的局部渐近稳定性,均衡点失稳后系统的演化过程采用数值模拟的方法进行讨论。讨论发现,企业利润在Nash均衡态最优,价格调整速度过高或政府给予的补贴份额过低均使系统进入混沌,企业利润将出现负增长。为了保证企业处于盈利模式,采用状态反馈和参数调节控制策略使系统长期处于Nash均衡。此外,分析吸引盆内部结构发现,过高的调整速度使系统发生全局分岔,初始决策的选择出现不可预测性。
中图分类号:
[1] KOO W W, UHM I H. Effects of dumping vs anti-dumping measures the US trade remedy laws applied to wheat imports from Canada[J]. Journal of World Trade, 2007, 41(6): 1163-1184. [2] 严俊樑, 钟根元. 完全信息下实行反倾销措施与补贴措施的静态博弈分析比较[J]. 陕西科技大学学报(自然科学版), 2008, 26(6): 167-171. YAN Junliang, ZHONG Genyuan. Difference research between AD rates and subsidy of static game under complete information[J]. Journal of Shaanxi University of Science & Technology, 2008, 26(6): 167-171. [3] 翁世洲, 朱俊. 政府反倾销与补贴战略实施博弈分析[J]. 现代商贸工业, 2017(8): 43-44. WENG Shizhou, ZHU Jun. Game analysis on the implementation of governments anti-dumping and subsidy strategy[J]. Modern Business Trade Industry, 2017(8): 43-44. [4] 江东坡, 朱满德. 双寡头竞争下的反倾销与补贴政策比较[J]. 华东经济管理, 2015, 29(5): 97-102. JIANG Dongpo, ZHU Mande. Comparison of antidumping tariff and production subsidy under oligopoly[J]. East China Economic Management, 2015, 29(5): 97-102. [5] COURNOT A A. Recherches sur les principes mathematiques de la theorie des richesses[M]. Paris: Hachette Livre-Bnf, 1838. [6] RAND D. Exotic phenomena in games and duopoly models[J]. Journal of Mathematical Economics, 1978, 5(2): 173-184. [7] DAY D, CHEN P. Nonlinear dynamics and evolutionary economics[C] //The Robustness of Bubbles and Crashes in Experimental Stock Markets, [S.l.] :[s.n.] , 1993. [8] ELSADANY A A. Dynamics of a Cournot duopoly game with bounded rationality based on relative profit maximization[J]. Applied Mathematics and Computation, 2017, 294: 253-263. [9] TRAMONTANA F, ELSADANY A A, XIN B G, et al. Local stability of the Cournot solution with increasing heterogeneous competitors[J]. Nonlinear Analysis: Real World Applications, 2015, 26: 150-160. [10] PENG Y, LU Q, XIAO Y. A dynamic Stackelberg duopoly model with different strategies[J]. Chaos, Solitons & Fractals, 2016, 85: 128-134. [11] AHMED E, ELSADANY A A, PUU T. On Bertrand duopoly game with differentiated goods[J]. Applied Mathematics and Computation, 2015, 251: 169-179. [12] BRIANZONI S, GORI L, MICHETTI E. Dynamics of a Bertrand duopoly with differentiated products and nonlinear costs: analysis, comparisons and new evidences[J]. Chaos, Solitons & Fractals, 2015, 79: 191-203. [13] FANTI L, GORI L, MAMMANA C, et al. The dynamics of a Bertrand duopoly with differentiated products: synchronization, intermittency and global dynamics[J]. Chaos, Solitons & Fractals, 2013, 52: 73-86. [14] CAVALLI F, NAIMZADA A. A Cournot duopoly game with heterogeneous players: nonlinear dynamics of the gradient rule versus local monopolistic approach[J]. Applied Mathematics and Computation, 2014, 249: 382-388. [15] MA J H, GUO Z B. The influence of information on the stability of a dynamic Bertrand game[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 30(1/2/3): 32-44. [16] ZHOU J, ZHOU W, CHU T, et al. Bifurcation, intermittent chaos and multi-stability in a two-stage Cournot game with R& D spillover and product differentiation[J]. Applied Mathematics and Computation, 2019, 341: 358-378. [17] 姚洪兴, 王梅. 动态Bertrand模型的复杂现象与混沌控制[J]. 陕西师范大学学报(自然科学版), 2015, 43(2): 24-27. YAO Hongxing, WANG Mei. The complex phenomena and the chaos control of Bertrand model[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2015, 43(2): 24-27. [18] BISCHI G I, NAIMZADA A. Global analysis of a dynamic duopoly game with bounded rationality[J]. Advances in Dynamic Games and Applications, 2000, 5: 361-385. |
[1] | 路正玉,周伟,于欢欢,赵娜. 考虑广告溢出效应的博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 63-70. |
[2] | 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38. |
[3] | 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82. |
[4] | 鞠培军. 广义Lorenz系统全局稳定的充要条件及其在混沌控制中的应用[J]. J4, 2012, 47(10): 97-101. |
[5] | 张伟强,刘扬正*. 统一超混沌系统的构建与电路实现[J]. J4, 2011, 46(7): 30-34. |
[6] | 侯强,靳祯. 基于比率且包含食饵避难的HollingTanner模型分析[J]. J4, 2009, 44(3): 56-60 . |
[7] | 刘 华,刘志广,苏 敏,李自珍, . 聚集效应对宿主—寄生物种群模型动态行为的影响[J]. J4, 2008, 43(8): 31-34 . |
|