《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (6): 76-83.doi: 10.6040/j.issn.1671-9352.0.2022.491
摘要:
首先引入子Z-Quantale的概念, 研究子Z-Quantale的一些性质。特别地, 构造单位Z-Quantale的所有含有单位元的子Z-Quantale集上的二元运算⊙, 使得其成为Quantale。其次, 定义并子Z-Quantale, 证明有最大(小)元的Z-Quantale的并子Z-Quantale一定有最大(小)元。最后, 引入Z-Quantale上余核映射的概念, 证明Z-Quantale上的并子Z-Quantale与其上的余核映射是一一对应的。
中图分类号:
1 | MULVEY C J , PELLETIER J W . On the quantisation of points[J]. Journal of Pure and Applied Algebra, 2001, 159 (2/3): 231- 295. |
2 |
GIRARD J Y . Linear logic[J]. Theoretical Computer Science, 1987, 50 (1): 1- 102.
doi: 10.1016/0304-3975(87)90045-4 |
3 |
ABRAMSKY S , VICKERS S . Quantales, observational logic and process semantics[J]. Mathematical Structures in Computer Science, 1993, 3 (2): 161- 227.
doi: 10.1017/S0960129500000189 |
4 | 李永明, 李志慧. Quantale与互模拟的进程语义[J]. 数学学报(中文版), 1999, 42 (2): 313- 320. |
LI Yongming , LI Zhihui . Quantales and process semantics of bisimulation[J]. Acta Mathematica Sinica, Chinese Series, 1999, 42 (2): 313- 320. | |
5 | ROSENTHAL K I . Quantales and their applications[M]. New York: Longman Scientific and Technical, 1990: 14- 28. |
6 | 韩胜伟, 赵彬. Quantale理论基础[M]. 北京: 科学出版社, 2016: 15- 27. |
HAN Shengwei , ZHAO Bin . Basis of quantale theory[M]. Beijing: Science Press, 2016: 15- 27. | |
7 |
WRIGHT J B , WAGNER E G , THATCHER J W . A uniform approach to inductive posets and inductive closure[J]. Theoretical Computer Science, 1978, 7 (1): 57- 77.
doi: 10.1016/0304-3975(78)90040-3 |
8 | BANDELT H J , ERNÉ M . The category of Z-continuous posets[J]. Journal of Pure and Applied Algebra, 1983, 30 (2): 219- 226. |
9 | 赵东升, 赵彬. Lawson-Hoffmann对偶定理的推广[J]. 数学学报(中文版), 1998, 41 (6): 1325- 1332. |
ZHAO Dongsheng , ZHAO Bin . Generalization of Lawson-Hoffmann duality[J]. Acta Mathematica Sinica, Chinese Series, 1998, 41 (6): 1325- 1332. | |
10 | ZHAO Dongsheng. Generalizations of continuous lattices and frames[D]. Cambridge: Cambridge University Thesis, 1992. |
11 | JOHNSTONE P T . Stone spaces[M]. Cambridge: Cambridge University Press, 1982: 39- 48. |
12 | ZHAO Dongsheng . Nuclei on Z-frames[J]. Soochow Journal of Mathematics, 1996, 22 (1): 59- 74. |
13 |
ZHAO Dongsheng . On projective Z-frames[J]. Canadian Mathematical Bulletin, 1997, 40 (1): 39- 46.
doi: 10.4153/CMB-1997-004-4 |
14 | 汪开云, 赵彬. Z-Quantale及其范畴性质[J]. 数学学报(中文版), 2010, 53 (5): 997- 1006. |
WANG Kaiyun , ZHAO Bin . Z-Quantales and their categorical properties[J]. Acta Mathematica Sinica, Chinese Series, 2010, 53 (5): 997- 1006. | |
15 | 鲁静, 汪开云, 赵彬. Z-Quantale的进一步结果[J]. 数学学报(中文版), 2015, 58 (6): 911- 922. |
LU Jing , WANG Kaiyun , ZHAO Bin . Some further results on Z-quantales[J]. Acta Mathematica Sinica, Chinese Series, 2015, 58 (6): 911- 922. | |
16 | 谢祥云. 序半群引论[M]. 北京: 科学出版社, 2001: 7- 10. |
XIE Xiangyun . An introduction of paritially ordered semigroup[M]. Beijing: Science Press, 2001: 7- 10. |
[1] | 刘敏, 赵彬*. Quantale上的Localic核与Localic余核映射[J]. J4, 2013, 48(2): 81-87. |
|