《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 24-30.doi: 10.6040/j.issn.1671-9352.0.2023.389
王忠伟
WANG Zhongwei
摘要: 给出余交换post-Hopf代数上的post-Hopf模的结构定理,构造余交换post-Hopf代数上的post-Hopf模的Hopf模结构,同时借助关于模双代数的相关Rota-Baxter算子,构造Hopf模的post-Hopf模结构。
中图分类号:
[1] LI Y N, SHENG Y H, TANG R. Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation[EB/OL].(2022-03-23)[2023-09-06]. https://arxiv.org/abs/2203.12174v1. [2] EBRAHIMI-FARD K, LUNDERVOLD A, MUNTHE-KAAS H. On the Lie enveloping algebra of a post-Lie algebra[J]. Journal of Lie Theory, 2015, 25(4):1139-1165. [3] OUDOM J M, GUIN D. On the Lie enveloping algebra of a pre-Lie algebra[J]. Journal of K-Theory, 2008, 2(1):147-167. [4] FOISSY L. Extension of the product of a post-Lie algebra and application to the SISO feedback transformation group[M] //Computation and Combinatorics in Dynamics, Stochastics and Control. Cham: Springer, 2018:369-399. [5] BAI C M, GUO L, SHENG Y H, et al. Post-groups,(Lie-)Butcher groups and the Yang-Baxter equation[J]. Mathematische Annalen, 2024, 388:3217-3167. [6] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Providence: American Mathematical Society, 1993. [7] SWEEDLER M E. Hopf Algebras[M]. New York: Benjamin, 1969. [8] DOI Y K. Unifying Hopf modules[J]. Journal of Algebra, 1992, 153(2):373-385. |
[1] | 陈全国,郭继东. 广义量子余交换余代数的Monoidal范畴[J]. J4, 2012, 47(12): 69-71. |
|