JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (10): 28-32.doi: 10.6040/j.issn.1671-9352.0.2014.072
Previous Articles Next Articles
ZHANG Ya-feng, ZHANG Wen-hui
CLC Number:
[1] FOXBY H B. Gorenstein modules and related modules[J]. Math Scand, 1972, 31:267-284. [2] VASCONCELOS W V. Divisor theory in module categories[M]. Amsterdam: North-Holland Publishing Co, 1974. [3] GOLOD E S. G-dimension and generalized perfect ideals[J]. Algebra Geometry Appl, Collection of Articles, Turdy Mat Steklov, 1984, 165:62-66. [4] HOLM H, WHITE D. Foxby equivalence over associative rings[J]. Math Kyoto Univ, 2007, 47:781-808. [5] CHHRISTENSEN L W. Semi-dualizing complexes and their auslander categories[J]. Trans Amer Math Soc, 2001, 353:1839-1883. [6] WHITE D. Gorenstein projective dimension with respect to a semidualizing module[J]. Comm Algebra, 2010, 2:111-137. [7] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Stablity of gorenstein categories[J]. London Math Soc, 2008, 2:481-502. [8] SAMIR BOUCHIBA. Stablity of gorenstein classes of modules[J]. Algebra Colloquium, 2013, 4:623-636. [9] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: de Gruyter, 2000. [10] ROTMAN J J. An introduction homological algebra[M]. New York: Academic Press, 1979. [11] LIU Zengfeng, HUANG Zhaoyong, XU Aimin. Gorenstein projective dimension with respect to a semidualizing module[J]. Comm Algebra, 2013, 2:1-18. [12] YANG Chunhua, LIANG Li. Gorenstein injective and projective complexes with respect to a semidualizing module[J]. Comm Algebra, 2012, 33:3352-3364. |
[1] | WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26. |
[2] | CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15. |
[3] | ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8. |
[4] | GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15. |
[5] | LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35. |
[6] | LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31. |
[7] | WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24. |
[8] | SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35. |
[9] | MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23. |
[10] | . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17. |
[11] | CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89. |
[12] | CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110. |
[13] | LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23. |
[14] | GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29. |
[15] | WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18. |
|