JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (10): 28-32.doi: 10.6040/j.issn.1671-9352.0.2014.072

Previous Articles     Next Articles

Stability of GC-projective modules

ZHANG Ya-feng, ZHANG Wen-hui   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2014-02-28 Online:2014-10-20 Published:2014-11-10

Abstract: M-type modules are defined, it is proved that if an exact complex of GC-projective modules , such that the complexes HomR(G,H) and HomR(H,G) are exact for every GC-projective module H, then the modules Ker(di) are still GC-projective modules for every i∈Z.

Key words: GC-projective complexes, M-type modules, Gorenstein GC-projective modules, GC-projective modules

CLC Number: 

  • O153.3
[1] FOXBY H B. Gorenstein modules and related modules[J]. Math Scand, 1972, 31:267-284.
[2] VASCONCELOS W V. Divisor theory in module categories[M]. Amsterdam: North-Holland Publishing Co, 1974.
[3] GOLOD E S. G-dimension and generalized perfect ideals[J]. Algebra Geometry Appl, Collection of Articles, Turdy Mat Steklov, 1984, 165:62-66.
[4] HOLM H, WHITE D. Foxby equivalence over associative rings[J]. Math Kyoto Univ, 2007, 47:781-808.
[5] CHHRISTENSEN L W. Semi-dualizing complexes and their auslander categories[J]. Trans Amer Math Soc, 2001, 353:1839-1883.
[6] WHITE D. Gorenstein projective dimension with respect to a semidualizing module[J]. Comm Algebra, 2010, 2:111-137.
[7] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Stablity of gorenstein categories[J]. London Math Soc, 2008, 2:481-502.
[8] SAMIR BOUCHIBA. Stablity of gorenstein classes of modules[J]. Algebra Colloquium, 2013, 4:623-636.
[9] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: de Gruyter, 2000.
[10] ROTMAN J J. An introduction homological algebra[M]. New York: Academic Press, 1979.
[11] LIU Zengfeng, HUANG Zhaoyong, XU Aimin. Gorenstein projective dimension with respect to a semidualizing module[J]. Comm Algebra, 2013, 2:1-18.
[12] YANG Chunhua, LIANG Li. Gorenstein injective and projective complexes with respect to a semidualizing module[J]. Comm Algebra, 2012, 33:3352-3364.
[1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[2] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[3] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[4] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[5] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[6] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[7] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[8] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[9] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[10] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[11] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
[14] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29.
[15] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!