JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (12): 114-120.doi: 10.6040/j.issn.1671-9352.0.2014.456

Previous Articles     Next Articles

Projective resolution in triangulated categories

WANG Wen-kang   

  1. School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou 730124, Gansu, China
  • Received:2014-10-20 Revised:2015-10-19 Online:2015-12-20 Published:2015-12-23

Abstract: Descriptions of distinguished triangles and ξ-projective resolution of objects being exact are given. A property on ξ-projective resolution of distinguished triangles is described.

Key words: ξprojective resolution, Exactness ofdistinguished triangle, a proper class of triangle

CLC Number: 

  • O153.3
[1] APOSTOLOS B. Relative homological algebra and purity in triangulated categories[J]. J Algebra, 2000, 227:268-361.
[2] 章璞. 导出范畴九讲[M/OL].[2014-08-10]. http://www.doc88.com/p-933465425135.html 2004.
[3] 章璞. 三角范畴与导出范畴[M]. 北京:科学出版社,2014.
[4] AUSLANGER M, BRIDGER M. Stable module theory[M]// Mem Amer Math Soc. Providence. RI: American Mathematical Society, 1969.
[5] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. New York: Walterde Gruyter Press, 2000.
[6] ASADOLLAHI J, SALARIAN S. Gorenstein objects in triangulated categories[J]. J Algebra, 2004, 281:264-386.
[7] ASADOLLAHI J, SALARIAN S. Tate cohomology and Gorensteinness for triangulated categories[J]. J Algebra, 2006, 299:480-502.
[8] 任兰兰, 杨晓燕. 三角范畴中的强n-ξ-Gorenstein-投射对象[J]. 山东大学学报:理学版, 2014, 49(4):58-65. REN Lanlan, YANG Xiaoyan. Strongly n-Gorenstein projective objects in triangulated categories[J]. Journal of Shangdong University: Natural Science, 2014, 49(4):58-65.
[9] 常雯雯, 高南. 三角范畴中的(n, m)-强ξ-Gorenstein-投射对象[J]. 应用数学与计算数学学报, 2014, 28(2):166-174. CHANG Wenwen, GAO Nan. (n,m)-strongly∈-Gorenstein projective object in triangulated categories[J]. Communication on Applied Mathematics and Computation, 2014, 28(2):166-174.
[1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[2] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[3] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[4] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[5] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[6] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[7] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[8] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[9] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[10] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[11] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
[14] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29.
[15] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!