JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (12): 114-121.doi: 10.6040/j.issn.1671-9352.0.2023.202
Previous Articles Next Articles
FAN Jianhang, WU Kuilin*
CLC Number:
[1] CAO Q J, WIERCIGROCH M, PAVLOVSKAIA E E, et al. Archetypal oscillator for smooth and discontinuous dynamics[J]. Physical Review E, 2006, 74(4):046218. [2] KUNZE M. Non-smooth dynamical systems[M]. Berlin: Springer-Verlag, 2000. [3] THOMPSON J M T, BOKAIAN A R, GHAFFARI R. Subharmonic resonances and chaotic motions of a bilinear oscillator[J]. IMA Journal of Applied Mathematics, 1983, 31(3):207-234. [4] DEIMLING K, HETZER G, SHEN W X. Almost periodicity enforced by coulomb friction[J]. Advances in Differential Equations, 1996, 1(2):265-281. [5] FEENY B. A nonsmooth coulomb friction oscillator[J]. Physica D: Nonlinear Phenomena, 1992, 59(1/2/3):25-38. [6] CHEN Hebai. Global analysis on the discontinuous limit case of a smooth oscillator[J]. International Journal of Bifurcation and Chaos, 2016, 26(4):1650061. [7] CHEN Hebai. Global bifurcation for a class of planar Filippov systems with symmetry[J]. Qualitative Theory of Dynamical Systems, 2016, 15:349-365. [8] CAO Q J, WIERCIGROCH M, PAVLOVSKAIA E E, et al. The limit case response of the archetypal oscillator for smooth and discontinuous dynamics[J]. International Journal of Non-linear Mechanics, 2008, 43(6):462-473. [9] CHEN Hebai, XIE Jianhua. Harmonic and subharmonic solutions of the SD oscillator[J]. Nonlinear Dynamics, 2016, 84:2477-2486. [10] CHEN Hebai, CAO Zhenbang, LI Denghui, et al. Global analysis on a discontinuous dynamical system[J]. International Journal of Bifurcation and Chaos, 2017, 27(5):1750078. [11] LI Tao, CHEN Xingwu, ZHAO Jianrong. Harmonic solutions of a dry friction system[J]. Nonlinear Analysis: Real World Applications, 2017, 35:30-44. [12] JIANG Fangfang, JI Zhicheng, WANG Yan. Periodic solutions of discontinuous damped duffing equations[J]. Nonlinear Analysis: Real World Applications, 2019, 47:484-495. [13] ZHANG Zhifen, DING Tongren, HUANG Wenzao, et al. Qualitative theory of differential equations[M]. Providence: American Mathematical Society, 1992. [14] CHENG Zhibo, REN Jingli. Harmonic and subharmonic solutions for superlinear damped duffing equation[J]. Nonlinear Analysis: Real World Applications, 2013, 14(2):1155-1170. [15] ZHOU Biliu, CHEN Hebai, XU Huidong, et al. Harmonic solutions for a class of non-autonomous piecewise linear oscillators[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 102:105912. [16] FREIRE E, PONCE E, TORRES F. Canonical discontinuous planar piecewise linear systems[J]. SIAM Journal on Applied Dynamical Systems, 2012, 11(1):181-211. |
[1] | WANG Qi, JIA Jian-wen. Nontrivial periodic solution of a stochastic non-autonomous SIS model with public health education [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 28-34. |
[2] | ZHAO Jiao. Existence and multiplicity of positive periodic solutions for a class of nonlinear third-order difference equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 50-58. |
[3] | WANG Ai-li. Transcritical bifurcation for a pest management model with impulse and virus infection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 1-8. |
[4] | YANG Hu-jun, HAN Xiao-ling. Existence of positive periodic solutions for a class of non-autonomous fourth-order ordinary differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 109-114. |
[5] | CHEN Rui-peng, LI Xiao-ya. Positive periodic solutions for second-order singular differential equations with damping terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 33-41. |
[6] | ZHANG Huan, LI Yong-xiang. Positive periodic solutions of higher-order ordinary differential equations with delayed derivative terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 29-36. |
[7] | ZHANG Shen-gui. Applications of variational method to impulsive differential systems with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 22-28. |
[8] | ZHANG Shen-gui. Periodic solutions for a class of Kirchhoff-type differential systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 1-6. |
[9] | LI Le-le, JIA Jian-wen. Hopf bifurcation of a SIRC epidemic model with delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 116-126. |
[10] | CHEN Yu-jia, YANG He. Existence of periodic solutions of a class of third order delay differential equations in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 84-94. |
[11] | . Periodic solutions for second order singular damped differential equations with a weak singularity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 84-88. |
[12] | WANG Shuang-ming. Dynamical analysis of a class of periodic epidemic model with delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 81-87. |
[13] | CHEN Bin. Third-order periodic boundary value problems with sign-changing Greens function [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 79-83. |
[14] | . Existence of periodic solutions for a class of Hamiltonian systems with p-Laplace [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 42-46. |
[15] | WU Cheng-ming. Existence of positive periodic solutions for second order singular coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 81-88. |
|