JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (12): 40-45.doi: 10.6040/j.issn.1671-9352.0.2023.390

Previous Articles     Next Articles

The Hopf algebraic automorphism group of quantum double of 8-dimensional Radford Hopf algebra

HU Mi, SUN Hua*, LI Libin   

  1. School of Mathematical Science, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Published:2024-12-12

Abstract: Let R2,2(-1) be the 8-dimensional Radford Hopf algebra, and D(R2,2(-1)) the quantum double of R2,2(-1), it is proved that the Hopf algebraic automorphism group of D(R2,2(-1)) is isomorphic to Klein four-group.

Key words: Hopf algebra, quantum double, automorphism group

CLC Number: 

  • O153.3
[1] DRINFELD V G. Hopf algebra and the Yang-Baxter equation[J]. Soviet Math Dokl, 1985, 32(1):254-258.
[2] RADFORD D E. On the coradical of a finite-dimensional Hopf algebra[J]. Proceedings of the American Mat-hematical Society, 1975, 53(1):9-15.
[3] KROP L, RADFORD D E. Finite-dimensional Hopf algebras of rank one in characteristic zero[J]. Journal of Algebra, 2006, 302:214-230.
[4] SUN Hua, CHEN Huixiang. Representations of Drinfeld doubles of Radford Hopf algebras[EB/OL].(2023-04-17)[2023-11-17]. https://arxiv.org/abs/2304.04908.
[5] WANG Zhihua, LI Libin, ZANG Yinhuo. Green rings of pointed rank one Hopf algebras of non-nilpotent type[J]. Journal of Algebra, 2016, 449:108-137.
[6] SWEEDLER M E. Hopf algebras[M]. New York: Benjamin, 1969:49-90.
[7] KASSEL C. Quantum groups[M]. New York: Springer, 1995:39-56.
[8] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Island: Amer Math Soc, 1993:1-9.
[9] 杜娜. Hopf代数的拟三角结构及其自同构群[D]. 北京:北京工业大学, 2020. DU Na. The quasitriangular structures and the group of automorphisms of Hopf algebras[D]. Beijing: Beijing University of Technology, 2020.
[1] WANG Zhongwei. A structure theorem of post-Hopf modules over a cocommutative post-Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(12): 24-30.
[2] Jie TAN,Liang ZHANG,Jidong GUO. The number of homomorphisms from dihedral groups to any finite groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 31-34.
[3] Hua SUN,Jian ZOU,Ruju ZHAO. Automorphism group of Green algebra of 8-dimensional Radford Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 61-70.
[4] WEI Meng-meng, LI Wei-xia, XING Jian-min. Simple 3-designs of PSL(2,2n)with block size 9 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 64-73.
[5] LI Shi-yu, CHEN Chen, CHEN Hui-xiang. Irreducible representations of Ore extensions of enveloping algebra of two-dimensional non-abelian Lie algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(12): 75-80.
[6] ZHANG Yu-xin, ZHENG Si-hang, FANG Ying, ZHENG Hui-hui, ZHANG Liang-yun. Rota-Baxter paired module system and curved Rota-Baxter paired module system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 6-14.
[7] LI Fang-shu, LI Lin-han, ZHANG Liang-yun. Construction of 3-Leibniz algebras and their Rota-Baxter operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 48-53.
[8] SHI Guo-dong. First fundamental theorem and Long dimodules for group-graded Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 25-31.
[9] CHEN Chen, GAO Ying-ying, CHEN Hui-xiang. Lazy 2-cocycles on 9-dimensional Taft algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 73-78.
[10] DAI Li. Z2-extensions of a pointed fusion category and applications [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 93-96.
[11] QIAO Ning, FANG Ying, ZHANG Liang-yun. Structure of Poisson algebras on Sweedler 4-dimensional Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 56-62.
[12] ZHANG Qian, LI Xuan, LI Xin, ZHENG Hui-hui, LI Lin-han, ZHANG Liang-yun. The construct of Rota-Baxter algebra on the Sweedler 4-dimensional Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 47-52.
[13] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[14] WANG Wei. Hopf algebra structures on unified products and smash coproducts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 9-13.
[15] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[2] ZHANG Ming-ming, QIN Yong-bin. A non-deterministic finite automata minimization method  based on preorder relation[J]. J4, 2010, 45(7): 34 -38 .
[3] SHAO Guo-jun, RU Miao-yan*, SUN Xue-ying. Study on synthesis process of polyether grafted polycarboxylate based superplasticizer[J]. J4, 2013, 48(05): 29 -33 .
[4] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[5] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[6] PEI Sheng-yu,ZHOU Yong-quan. A mult-objective particle swarm optimization algorithm based on  the  chaotic mutation[J]. J4, 2010, 45(7): 18 -23 .
[7] QIN Zhao-yu,LIU Shi-lian*,YANG Yin-rong,LIU Fu-jun,LI Jian-yuan,SONG Chun-hua . Technology exploration for proteomics analysis in hepatopancreas of shrimp (Fenneropenaeus chinensis) with white spot syndrome[J]. J4, 2007, 42(7): 5 -08 .
[8] WU Dai-yong. Global attractivity of a nonlinear discrete Logistic model  with feedback control[J]. J4, 2013, 48(4): 114 -110 .
[9] ZHANG Shen-gui. Multiplicity of solutions for local superlinear p-kirchhoff-type equation#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 61 -68 .
[10] WU Chun-xue . WNUS property of Musielak-Orlicz sequence spaces[J]. J4, 2007, 42(3): 18 -22 .