JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (5): 20-24.doi: 10.6040/j.issn.1671-9352.0.2024.192

• Group Theory • Previous Articles    

On the idempotent rank of the semigroup P On,r

RUAN Limin, GOU Changsheng, ZHAO Ping*   

  1. School of Mathematics Science Guizhou Normal University, Guiyang 550025, Guizhou, China
  • Published:2025-05-19

Abstract: Let P On be the semigroup of all order-preserving partial transformation on Xn={1,2,…,n}. For 1≤r≤n, putP On,r={α∈P On:xα=x,∠x∈dom(α)∩{1,2,…,r}}.It is easy to check that the semigroup P On,r is subsemigroup of P On. In this paper, we prove that P On,r is generated by idempotents and its idempotent rank is equal to 3n-2r-1.

Key words: order-preserving partial transformation semigroup, fixed set, idempotent, idempotent rank

CLC Number: 

  • O152
[1] HOWIE J M. Fundamentals of semigroup theory[M]. London: Oxford University Press, 2003.
[2] GOMES G M S, HOWIE J M. On the ranks of certain finite semigroups of transformations[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1987, 101(3):395-403.
[3] HOWIE J M, MCFADDEN R B. Idempotent rank in finite full transformation semigroups[J]. Proceedings of the Royal Society of Edinburgh, 1990, 114(3/4):161-167.
[4] GARBA G U. Idempotents in partial transformation semigroups[J]. Proceedings of the Royal Society of Edinburgh(Section A: Mathematics), 1990, 116(3/4):359-366.
[5] GOMES G M S, HOWIE J M. On the ranks of certain semigroups of order-preserving transformations[J]. Semigroup Forum, 1992, 45(1):272-282.
[6] HONYAM P, SANWONG J. Semigroups of transformations with fixed sets[J]. Quaestiones Mathematicae, 2013, 36(1):79-92.
[7] AYIK G, ABUSARRIS H D M. On the rank of generalized transformation semigroups[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45(4):1777-1787.
[1] SHU Qin, GONG Heyu, ZHAO Ping. On the rank of the semigroup P F(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(12): 54-59.
[2] Yang LIU,Chunmei GONG. r-wide semigroups with right regular medial idempotents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 115-121.
[3] Heyu GONG,Qin SHU,Ping ZHAO. On the rank of semigroup $\mathscr{C} \mathscr{F}_{(n, r)}$ [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 122-126.
[4] Yao WANG,Jianghuan CHEN,Yanli REN. Quasi-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 1-8.
[5] HAO Hong-yan, LI Yuan. The left-star order for idempotent operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 39-44.
[6] MA Shuai-ying, ZHANG Jian-hua. A class of non-global higher derivable nonlinear maps on triangular algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(2): 48-55.
[7] ZHANG Chuan-jun, ZHAO Hai-qing. Maximal idempotent-generated subsemigroups of the semigroup PCn [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 7-10.
[8] PANG Yong-feng, WEI Yin, WANG Quan. Some properties of Drazin order [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 33-42.
[9] GAO Shi-juan, ZHANG Jian-hua. Characterization of (α, β)-derivation on rings with idempotents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 1-5.
[10] SHAO Yong. Semilattice-ordered completely regular periodic semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1-5.
[11] LIU Hui-zhen, XIN Xiao-long, WANG Jun-tao. On derivations of monadic MV-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 53-60.
[12] YANG Yuan, ZHANG Jian-hua. A local characterization of centralizers on B(H) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 1-4.
[13] LIU Cai-ran, SONG Xian-mei. Quadratic residue codes over Fl+vFl+v2Fl [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 45-49.
[14] LIN Ping-feng, ZENG Wei, ZENG Chun-yi. Idempotents of semigroup PΓ(Λ×Λ) of binary relations determined by the semilattice Γ on the set Λ [J]. J4, 2013, 48(8): 36-40.
[15] XIE Tao, ZUO Ke-zheng. [J]. J4, 2013, 48(4): 95-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!