JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (2): 89-94.doi: 10.6040/j.issn.1671-9352.0.2018.145

Previous Articles    

Finitely presented dimensions on recollements of Abelian categories

FENG Yao-yao, YAO Hai-lou*   

  1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
  • Published:2019-02-25

Abstract: The concepts of finitely presented dimensions in Abelian categories are introduced, and the relations of finitely presented dimensions of objects in a short exact sequence are studied. Let Rab(A,B,C )be a recollement of Abelian categories where A,B and C are abelian categories, it is proved that finitely presented dimension of B is finite if and only if the finitely presented dimensions of A and C are finite under some conditions.

Key words: recollement, Abelian category, finitely presented dimension

CLC Number: 

  • O153.3
[1] BEILINSON A A, BERSTEIN J, DELIGNE P. Faisceaux pervers[M] // Astérisque 100, Soc Math. Paris:[s.n.] , 1982.
[2] MACPHERSON R, VILONEN K. Elementary construction of perverse sheaves[J]. Invent Math, 1986, 84:403-485.
[3] HAPPEL D. Introduction techniques for homological conjectures[J]. Tsukuba J Math, 1993, 17: 115-130.
[4] WIEDEMANN A. On stratifcations of derived module categories[J]. Canadian Math Bull, 1991, 34: 275-280.
[5] PSAROUDAKIS C. Homological theory of recollements of abelian categories[J]. J Algebra. 2014, 398: 63-110.
[6] NG H K. Finitely presented dimension of commutative rings and module[J]. Pacific J Maths, 1984, 113(2): 417-431.
[7] MITCHELL B. Theory of categories[M]. New York: Academic Press, 1976.
[8] POPESCU N. Abelian categories with applications to rings and modules[J]. Journal of Heat Transfer, 1973, 121(2): 253-260.
[9] 章璞.三角范畴与导出范畴[M]. 北京:科学出版社, 2015. ZHANG Pu, Triangulated categories and derived categories[M]. Beijing: Science Press, 2015.
[1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[2] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[3] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[4] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[5] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[6] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[7] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[8] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[9] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[10] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[11] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29.
[14] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
[15] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!