JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (1): 23-32.doi: 10.6040/j.issn.1671-9352.0.2019.069
Previous Articles Next Articles
ZHENG Rui-rui1, SUN Tong-jun2*
CLC Number:
[1] LIONS J L. Optimal control of systems governed by partial differential equations[M]. Berlin: Springer-Verlag, 1971. [2] LIU Wenbin, YAN Ningning. Adaptive finite element method for optimal control governed by PDEs[M]. Beijing: Science Press, 2008. [3] FU Hongfei, RUI Hongxing. A prior error for optimal control problem governed by transient advection-diffusion equations[J]. J Sci Comput, 2009, 38:290-315. [4] FU Hongfei, RUI Hongxing. A characteristic-mixed finite element method for time-dependent convection-diffusion optimal control problem[J]. Appl Math Comput, 2011, 218:3430-3440. [5] SUN Tongjun. Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal control problem[J]. Int J Numer Anal Model, 2010, 7(1):87-107. [6] SUN Tongjun, GE Liang, LIU Wenbin. Equivalent a posteriori error estimates for a constrained optimal control problem governed by parabolic equations[J]. Int J Numer Anal Model, 2013, 10(1):1-23. [7] SUN Tongjun, SHEN Wanfang, GONG Benxue, et al. A priori error estimate of stochastic Galerkin method for optimal control problem governed by stochastic elliptic PDE with constrained control[J]. J Sci Comput, 2016, 67(2):405-431. [8] DAWES J H P, SOUZA M O. A derivation of Hollings type Ⅰ,Ⅱ and Ⅲ functional responses in predator-prey systems[J]. J Theor Biol, 2013, 327:11-22. [9] APREUTESEI N C. An optimal control problem for a prey-predator system with a general functional response[J]. Appl Math Lett, 2009, 22:1062-1065. [10] ZHANG Lei, LIU Bin. Optimal control problem for an ecosystem with two competing preys and one predator[J]. J Math Anal Appl, 2015, 424:201-220. [11] APREUTESEI N C, DIMITRIU G. On a prey-predator reaction-diffusion system with Holling type III functional response[J]. J Comput Appl Math, 2010, 235:366-379. [12] GARVIE M R, TRENCHEA C. Optimal control of a Nutrient-Phytoplankton-Zooplankon-Fish system[J]. SIAM J Control Optim, 2007, 46(3):775-791. [13] APREUTESEI N C. Necessary optimality conditions for a Lotka-Volterra three species system[J]. Math Model Nat Phenom, 2006,1(1):120-13. [14] APREUTESEI N C, DIMITRIU G, STRUGARIU R. An optimal control problem for a two-prey and one-predator model with diffusion[J]. Comput Math Appl, 2014, 67:2127-2143. [15] CIARLET P G. The finite element method for elliptic problems[M]. Philadelphia: SIAM, 2002. [16] LIU Wenbin, YAN Ningning. A posteriori error estimates for control problems governed by Stocks equations[J]. SIAM J Numer Anal, 2002, 40:1850-1869. [17] THOMÉE V. Galerkin finite element methods for parabolic problems[M]. Berlin: Springer, Springer Series in Computational Mathematics, 1997. [18] WHEELER M F. A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations[J]. SIAM J Numer Anal, 1973, 10:723-759. |
[1] | LIU Bing-bing, HAO Qing-yi. First order necessary optimality conditions for a class of pessimistic bilevel programming problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 44-50. |
[2] | YU Li. ε-strongly subdifferential of set-valued mapping and application [J]. J4, 2013, 48(3): 99-105. |
|