JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (2): 73-78.doi: 10.6040/j.issn.1671-9352.0.2019.453
CHEN Chen1, GAO Ying-ying2, CHEN Hui-xiang1*
CLC Number:
[1] DOI Y. Braided bialgebras and quadratic blalgebras[J]. Communications in Algebra, 1993, 21(5):1731-1749. [2] DOI Y, TAKEUCH M. Multiplication alteration by two-cocycles-the quantum version[J]. Communications in Algebra, 1994, 22(14):5715-5732. [3] ANDRUSKIEWITSCH N, ANGIONO I, GARCÍA IGLESIAS A, et al. Lifting via cocycle deformation[J]. Journal of Pure and Applied Algebra, 2014, 218(4):684-703. [4] CHEN Huixiang. Skew pairing, cocycle deformations and double crossproducts[J]. Acta Mathematica Sinica, 1999, 15(2):225-234. [5] CHEN Huixiang, ZHANG Yinhuo. Cocycle deformations and Brauer groups[J]. Communications in Algebra, 2007, 35(2):399-433. [6] ANDRUSKIEWITSCH N, FANTINO F,GARCIA G A, et al. On Nichols algebras associated to simple racks[M] // Groups, Algebras and Applications: Contemp Math.[S.l.] : AMS, 2011, 537:31-56. [7] GUILLOT P, KASSEL C, MASUOKA A. Twisting algebras using non-commutative torsors: explicit computations[J]. Mathematische Zeitschrift, 2012, 271(3/4):789-818. [8] BICHON J, CARNOVALE G. Lazy cohomology: an analogue of the Schur multiplier for arbitrary Hopf algebras[J]. Journal of Pure and Applied Algebra, 2006, 204(3):627-665. [9] TAFT E J. The order of the antipode of finite-dimensional Hopf algebra[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(11):2631-2633. [10] KASSEL C. Quantum groups[M]. New York: Springer-Verlag, 1995. [11] RADFORD D E. The order of the antipode of a finite dimensional Hopf algebra is finite[J]. American Journal of Mathematics, 1976, 98(2):333. [12] CIBILS C. A quiver quantum group[J]. Communications in Mathematical Physics, 1993, 157(3):459-477. [13] CHEN Huixiang, VAN OYSTAEYEN F,ZHANG Yinhuo. The Green rings of Taft algebras[J]. Proceedings of the American Mathematical Society, 2014, 142(3):765-775. [14] HUANG Hualin, CHEN Huixiang, ZHANG Pu. Generalized Taft algebras[J]. Algebra Colloqu, 2004, 11(3):313-320. [15] LI Libin, ZHANG Yinhuo. The Green rings of the generalized Taft Hopf algebras[J]. Contemp Math, 2013, 585:275-288. [16] CHEN Huixiang. Irreducible representations of a class of quantum doubles[J]. Journal of Algebra, 2000, 225(1):391-409. [17] CHEN Huixiang. Representations of a class of Drinfelds doubles[J]. Communications in Algebra, 2005, 33(8):2809-2825. [18] CHEN Huixiang, MOHAMMED H S E, LIN Weijun, et al. The projective class rings of a family of pointed Hopf algebras of rank two[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2016, 23(5):693-711. [19] CHEN Huixiang, MOHAMMED H S E, SUN Hua. Indecomposable decomposition of tensor products of modules over Drinfeld doubles of Taft algebras[J]. Journal of Pure and Applied Algebra, 2017, 221(11):2752-2790. [20] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Providence, Rhode Island: AMS, 1993. [21] SWEEDLER M E. Hopf algebra[M]. New York: Benjamin, 1969. |
[1] | ZHANG Qian, LI Xuan, LI Xin, ZHENG Hui-hui, LI Lin-han, ZHANG Liang-yun. The construct of Rota-Baxter algebra on the Sweedler 4-dimensional Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 47-52. |
[2] | LI Qiang, MA Li-li, WANG Xiao-yan, LYU Li-jiao. Abelian extensions of Hom-Jordan Lie algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 4-8. |
[3] | CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110. |
[4] | WANG Wei. Hopf algebra structures on unified products and smash coproducts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 9-13. |
[5] | GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15. |
[6] | YU Xiao-lan. Global dimensions of cocycle deformations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 39-43. |
[7] | GUO Shuang-jian, LI Yi-zheng. Semisimplicity of the categories of Hom-Yetter-Drinfeld modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 17-23. |
[8] | WU Zi-juan, CHEN Yuan-yuan, ZHANG Liang-yun. Quasidimodule algebras over Hopf quasigroups and Yetter-Drinfeld quasimodule algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 28-33. |
[9] | JIA Ling, CHEN Xiao-yuan. A duality theorem for a Yetter-Drinfeld Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 98-101. |
[10] | YOU Mi-man, ZHAO Xiao-fan. Diagonal crossed products over monoidal Hom-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 76-80. |
[11] | LU Dao-wei, ZHANG Xiao-hui. Ore extensions of G-cograded multiplier Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 52-58. |
[12] | ZHAO Shi-yin1,2, ZHOU Ke-yuan1. The module algebra structures on M2(k) [J]. J4, 2013, 48(8): 24-29. |
[13] | WANG Sheng-xiang1,2, GUO Shuang-jian2. Hom-Hopf modules for a class of symmetric categories [J]. J4, 2013, 48(4): 40-45. |
[14] | DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in Yetter-Drinfeld module categories [J]. J4, 2013, 48(2): 20-22. |
[15] |
CHEN Hua-xi1, ZHANG Xiao-hui2, XU Qing-bing3.
The Structure Theorem of weak comodule algebras in Yetter-Drinfeld module categories [J]. J4, 2013, 48(12): 14-17. |
|