JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (2): 73-78.doi: 10.6040/j.issn.1671-9352.0.2019.453

Previous Articles    

Lazy 2-cocycles on 9-dimensional Taft algebra

CHEN Chen1, GAO Ying-ying2, CHEN Hui-xiang1*   

  1. 1. College of Mathematical Sciences, Yangzhou University, Yangzhou 225002, Jiangsu, China;
    2. Suqian Suzhou Foreign Language School, Suqian 233800, Jiangsu, China
  • Published:2020-02-14

Abstract: The normal lazy 2-cocycles on 9-dimensional Taft algebra are investigated. The structures of all such 2-cocycles are given. It is shown that each normal lazy 2-cocycle on 9-dimensional Taft algebra is exactly determined by one scale, and that the group of all normal lazy 2-cocycles on 9-dimensional Taft algebra with respect to convolution product is isomorphic to the additive group of the ground field.

Key words: Hopf algebra, Taft algebra, 2-cocycle, normal 2-cocycle, lazy 2-cocycle

CLC Number: 

  • O152.1
[1] DOI Y. Braided bialgebras and quadratic blalgebras[J]. Communications in Algebra, 1993, 21(5):1731-1749.
[2] DOI Y, TAKEUCH M. Multiplication alteration by two-cocycles-the quantum version[J]. Communications in Algebra, 1994, 22(14):5715-5732.
[3] ANDRUSKIEWITSCH N, ANGIONO I, GARCÍA IGLESIAS A, et al. Lifting via cocycle deformation[J]. Journal of Pure and Applied Algebra, 2014, 218(4):684-703.
[4] CHEN Huixiang. Skew pairing, cocycle deformations and double crossproducts[J]. Acta Mathematica Sinica, 1999, 15(2):225-234.
[5] CHEN Huixiang, ZHANG Yinhuo. Cocycle deformations and Brauer groups[J]. Communications in Algebra, 2007, 35(2):399-433.
[6] ANDRUSKIEWITSCH N, FANTINO F,GARCIA G A, et al. On Nichols algebras associated to simple racks[M] // Groups, Algebras and Applications: Contemp Math.[S.l.] : AMS, 2011, 537:31-56.
[7] GUILLOT P, KASSEL C, MASUOKA A. Twisting algebras using non-commutative torsors: explicit computations[J]. Mathematische Zeitschrift, 2012, 271(3/4):789-818.
[8] BICHON J, CARNOVALE G. Lazy cohomology: an analogue of the Schur multiplier for arbitrary Hopf algebras[J]. Journal of Pure and Applied Algebra, 2006, 204(3):627-665.
[9] TAFT E J. The order of the antipode of finite-dimensional Hopf algebra[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(11):2631-2633.
[10] KASSEL C. Quantum groups[M]. New York: Springer-Verlag, 1995.
[11] RADFORD D E. The order of the antipode of a finite dimensional Hopf algebra is finite[J]. American Journal of Mathematics, 1976, 98(2):333.
[12] CIBILS C. A quiver quantum group[J]. Communications in Mathematical Physics, 1993, 157(3):459-477.
[13] CHEN Huixiang, VAN OYSTAEYEN F,ZHANG Yinhuo. The Green rings of Taft algebras[J]. Proceedings of the American Mathematical Society, 2014, 142(3):765-775.
[14] HUANG Hualin, CHEN Huixiang, ZHANG Pu. Generalized Taft algebras[J]. Algebra Colloqu, 2004, 11(3):313-320.
[15] LI Libin, ZHANG Yinhuo. The Green rings of the generalized Taft Hopf algebras[J]. Contemp Math, 2013, 585:275-288.
[16] CHEN Huixiang. Irreducible representations of a class of quantum doubles[J]. Journal of Algebra, 2000, 225(1):391-409.
[17] CHEN Huixiang. Representations of a class of Drinfelds doubles[J]. Communications in Algebra, 2005, 33(8):2809-2825.
[18] CHEN Huixiang, MOHAMMED H S E, LIN Weijun, et al. The projective class rings of a family of pointed Hopf algebras of rank two[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2016, 23(5):693-711.
[19] CHEN Huixiang, MOHAMMED H S E, SUN Hua. Indecomposable decomposition of tensor products of modules over Drinfeld doubles of Taft algebras[J]. Journal of Pure and Applied Algebra, 2017, 221(11):2752-2790.
[20] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Providence, Rhode Island: AMS, 1993.
[21] SWEEDLER M E. Hopf algebra[M]. New York: Benjamin, 1969.
[1] ZHANG Qian, LI Xuan, LI Xin, ZHENG Hui-hui, LI Lin-han, ZHANG Liang-yun. The construct of Rota-Baxter algebra on the Sweedler 4-dimensional Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 47-52.
[2] LI Qiang, MA Li-li, WANG Xiao-yan, LYU Li-jiao. Abelian extensions of Hom-Jordan Lie algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 4-8.
[3] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[4] WANG Wei. Hopf algebra structures on unified products and smash coproducts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 9-13.
[5] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[6] YU Xiao-lan. Global dimensions of cocycle deformations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 39-43.
[7] GUO Shuang-jian, LI Yi-zheng. Semisimplicity of the categories of Hom-Yetter-Drinfeld modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 17-23.
[8] WU Zi-juan, CHEN Yuan-yuan, ZHANG Liang-yun. Quasidimodule algebras over Hopf quasigroups and Yetter-Drinfeld quasimodule algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 28-33.
[9] JIA Ling, CHEN Xiao-yuan. A duality theorem for a Yetter-Drinfeld Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 98-101.
[10] YOU Mi-man, ZHAO Xiao-fan. Diagonal crossed products over monoidal Hom-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 76-80.
[11] LU Dao-wei, ZHANG Xiao-hui. Ore extensions of G-cograded multiplier Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 52-58.
[12] ZHAO Shi-yin1,2, ZHOU Ke-yuan1. The module algebra structures on M2(k) [J]. J4, 2013, 48(8): 24-29.
[13] WANG Sheng-xiang1,2, GUO Shuang-jian2. Hom-Hopf modules for a class of symmetric categories [J]. J4, 2013, 48(4): 40-45.
[14] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories [J]. J4, 2013, 48(2): 20-22.
[15] CHEN Hua-xi1, ZHANG Xiao-hui2, XU Qing-bing3. The Structure Theorem of weak comodule algebras in
Yetter-Drinfeld module categories
[J]. J4, 2013, 48(12): 14-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!