JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (2): 91-98.doi: 10.6040/j.issn.1671-9352.0.2018.751

Previous Articles    

Gorenstein IFP-Flat modules

LIU Ting, ZHANG Wen-hui*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-02-14

Abstract: Gorenstein IFP-flat modules are introduced, the homological properties of these modules are discussed, and the equivalent characterizations of Gorenstein IFP-flat modules under the right coherent ring are investigated.

Key words: Gorenstein IFP-flat module, IFP-injective module, Gorenstein IFP-flat dimension

CLC Number: 

  • O153.3
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(4):611-633.
[2] ENOCHS E E, JENDA O M G, TORRECILLAS B. Gorenstein flat modules[J]. Journal of Nanjing Daxue Xuebao Shuxue Bannian Kan, 1993, 10:1-9.
[3] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000.
[4] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189:167-193.
[5] MAO Lixin, DING Nanqing. Gorenstein FP-injective and Gorenstein flat modules[J]. Journal of Algebra and Its Applications, 2008, 7(4):491-506.
[6] DING Nanqing, LI Yuanlin, MAO Lixin, Strongly Gorenstein flat modules[J]. Journal of Aust Math Soc, 2009, 86:323-338.
[7] LU Bo, LIU Zhongkui. IFP-Flat modules and IFP-Injective modules[J]. Journal of Comunications in Algebra, 2012, 40(2), 361-374.
[8] DAMIANO R F. Coflat rings and modules[J]. Pacific Math, 1979, 81(2):349-369.
[9] BENNIS D. Rings over which the class of Gorenstein flat modules is closed under extensions[J]. Journal of Comunications in Algebra, 2009, 37:855-868.
[10] ZHU Xiaosheng. Resolving resolution dimensions[J]. Journal of Algebra Represent Theory, 2013, 16:1165-1191.
[11] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Stability of Gorenstein categories[J]. Journal of London Math Soc, 2008, 77:481-502.
[12] HUANG Zhaoyong. Proper resolutions and Gorenstein categories[J]. Journal of Algebra, 2013, 393:142-169.
[1] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[2] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[3] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[4] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[5] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[6] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[7] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[8] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[9] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[10] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[11] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[14] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29.
[15] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!