JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (2): 91-98.doi: 10.6040/j.issn.1671-9352.0.2018.751
LIU Ting, ZHANG Wen-hui*
CLC Number:
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(4):611-633. [2] ENOCHS E E, JENDA O M G, TORRECILLAS B. Gorenstein flat modules[J]. Journal of Nanjing Daxue Xuebao Shuxue Bannian Kan, 1993, 10:1-9. [3] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000. [4] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189:167-193. [5] MAO Lixin, DING Nanqing. Gorenstein FP-injective and Gorenstein flat modules[J]. Journal of Algebra and Its Applications, 2008, 7(4):491-506. [6] DING Nanqing, LI Yuanlin, MAO Lixin, Strongly Gorenstein flat modules[J]. Journal of Aust Math Soc, 2009, 86:323-338. [7] LU Bo, LIU Zhongkui. IFP-Flat modules and IFP-Injective modules[J]. Journal of Comunications in Algebra, 2012, 40(2), 361-374. [8] DAMIANO R F. Coflat rings and modules[J]. Pacific Math, 1979, 81(2):349-369. [9] BENNIS D. Rings over which the class of Gorenstein flat modules is closed under extensions[J]. Journal of Comunications in Algebra, 2009, 37:855-868. [10] ZHU Xiaosheng. Resolving resolution dimensions[J]. Journal of Algebra Represent Theory, 2013, 16:1165-1191. [11] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Stability of Gorenstein categories[J]. Journal of London Math Soc, 2008, 77:481-502. [12] HUANG Zhaoyong. Proper resolutions and Gorenstein categories[J]. Journal of Algebra, 2013, 393:142-169. |
[1] | WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107. |
[2] | WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26. |
[3] | CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15. |
[4] | ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8. |
[5] | LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31. |
[6] | WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24. |
[7] | GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15. |
[8] | LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35. |
[9] | MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23. |
[10] | . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17. |
[11] | SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35. |
[12] | CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110. |
[13] | CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89. |
[14] | GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29. |
[15] | LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23. |
|