JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (8): 38-42.doi: 10.6040/j.issn.1671-9352.0.2019.877

Previous Articles    

Abelian extensions of δ-Lie color algebras

MA Li-li, LI Qiang   

  1. School of Science, Qiqihar University, Qiqihar 161006, Heilongjiang, China
  • Published:2020-07-14

Abstract: We construct δ-Lie color algebra T⊕V by representations and 2-cocycle of δ-Lie color algebra T. Then we prove that equivalent abelian extensions of δ-Lie color algebras give the same representation. Finally, we obtain a 2-cocycle using representations and its abelian extension.

Key words: δ-Lie color algebra, representation, 2-cocycle, abelian extension

CLC Number: 

  • O152.5
[1] McANALLY D, BRACKEN A. Uncolouring of Lie colour algebras[J]. Bull Austral Math Soc, 1997, 55(3):425-452.
[2] SCHEUNERT M. Generalized Lie algebras[J]. J Math Phys, 1979, 20(4):712-720.
[3] SCHEUNERT M, ZHANG Ruibin. Cohomology of Lie superalgebras and their generalizations[J]. J Math Phys, 1998, 39(9):5024-5016.
[4] KOCHETOV M, RADU O. Engels theorem for generalized Lie algebras[J]. Algebr Represent Theory, 2010, 13(1):69-77.
[5] MA Lili, CHEN Liangyun. On δ-Jordan Lie triple systems[J]. Linear Multilinear Algebra, 2017, 65(4):731-751.
[6] LIU Yan, CHEN Liangyun, MA Yao. Hom-Nijienhuis operators and T*-extensions of hom-Lie superalgebras[J]. Linear Algebra Appl, 2013, 439(7):2131-2144.
[7] ZHAO Jun, CHEN Liangyun, MA Lili. Representations and T*-extensions of Hom-Jordan-Lie algebras[J]. Comm Algebra, 2016, 44(7):2786-2812.
[8] MA Lili, CHEN Liangyun, ZHAO Jun. δ-Hom-Jordan Lie superalgebras[J]. Comm Algebra, 2018, 46(4):1668-1697.
[1] CHEN Chen, GAO Ying-ying, CHEN Hui-xiang. Lazy 2-cocycles on 9-dimensional Taft algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 73-78.
[2] YU Chuan-ming, FENG Bo-lin, TIAN Xin, AN Lu. Deep representative learning based sentiment analysis in the cross-lingual environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 13-23.
[3] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[4] LI Qiang, MA Li-li, WANG Xiao-yan, LYU Li-jiao. Abelian extensions of Hom-Jordan Lie algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 4-8.
[5] YAO Liang, HONG Yu, LIU Hao, LIU Le, YAO Jian-min. Translation model adaptation based on semantic distribution similarity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(7): 43-50.
[6] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91.
[7] WU Zi-juan, CHEN Yuan-yuan, ZHANG Liang-yun. Quasidimodule algebras over Hopf quasigroups and Yetter-Drinfeld quasimodule algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 28-33.
[8] ZHOU Jian-ren, WU Hong-bo. A schematic extension of IMTL logic system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 28-34.
[9] YANG Yang, LIU Long-fei, WEI Xian-hui, LIN Hong-fei. New methods for extracting emotional words based on distributed representations of words [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 51-58.
[10] ZHENG Shi-qiu, FENG Li-chao, LIU Qiu-mei. Representation theorem and converse comparison theorem of#br#  RBSDEs with continuous coefficient#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 107-110.
[11] YANG Wen-yan, LIU Xiao-ji*. The integral representations for the core inverses of matrices [J]. J4, 2011, 46(4): 86-89.
[12] JIAO Yu-juan, ZHANG Shen-gui. Triangular matrix representations of rings of skew Hurwitz series [J]. J4, 2011, 46(2): 105-109.
[13] QIAO Xi-min1,2, WU Hong-bo1*. The representation theorem of lattice BR0-algebraic structure [J]. J4, 2010, 45(9): 38-42.
[14] LI Sha-sha, GONG Ben-xue. Realization of quantum symplectic group @(Spq(6)) [J]. J4, 2010, 45(8): 53-56.
[15] ZHENG Shi-qiu 1, XU Feng 2, JIAO Lin 3, MENG Xian-rui 1. A representation theorem for generators of reflected backcoard stochastic differential equations with double obstacles and its applications [J]. J4, 2010, 45(8): 118-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!