JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (2): 48-55.doi: 10.6040/j.issn.1671-9352.0.2020.345

Previous Articles    

A class of non-global higher derivable nonlinear maps on triangular algebras

MA Shuai-ying, ZHANG Jian-hua*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Published:2021-01-21

Abstract: Let T =Tri(A,M,B )be a triangular algebra, and {δn}n∈N:T →T be a family of maps(without the assumption of additivity and where δ0 is the identity map). If n}n∈N satisfies δn(UV)=∑i+j=nδi(U)δj(V)for any U,V∈T with at least one of them is idempotent, then {δn}n∈N is an additive higher derivation on T.

Key words: triangular algebra, idempotent, higher derivation

CLC Number: 

  • O177.1
[1] QI Xiaofei, HOU Jinchuan. Characterization of Lie derivations on prime rings[J]. Communications in Algebra, 2011, 39(10):3824-3835.
[2] NARANJANI L, HASSANI M, MIRZAVAZIRI M. Local higher derivations on C*-algebras are higher derivations[J]. International Journal of Nonlinear Analysis and Applications, 2018, 9(1):111-115.
[3] LIU Lei. Lie triple derivations on factor von Neumann algebras[J]. Bulletin of Korean Mathematical Society, 2015, 52(2):581-591.
[4] 刘丹, 张建华. 三角代数上 Jordan 高阶导子的刻画[J]. 数学学报(中文版), 2016, 59(4):461-468. LIU Dan, ZHANG Jianhua. Characterization of Jordan higher derivations on triangular algebras[J]. Acta Mathematica Sinica(Chinese Series), 2016, 59(4):461-468.
[5] WONG Dein, MA Xiaobin, CHEN Lin. Nonlinear mappings on upper triangular matrices derivable at zero point[J]. Linear Algebra and its Applications, 2015, 483(10):236-248.
[6] GHAHRAMANI H, GHOSSEIRI M N, ZADEH L H. On the Lie derivations and generalized Lie derivations of quaternion rings[J]. Communications in Algebra, 2019, 47(3):1215-1221.
[7] LIU Wenhui. Nonlinear generalized Lie n-derivations on triangular algebras[J]. Communications in Algebra, 2018, 46(6):2368-2383.
[8] YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra and its Applications, 2010, 432(11):2953-2960.
[9] FEI Xiuhai, ZHANG Jianhua. Nonlinear generalized Lie derivations on triangular algebras[J]. Linear and Multilinear Algebra, 2017, 65(6):1158-1170.
[10] ALKENANI A N, ASHRAF M, JABEEN A. Nonlinear generalized Jordan(σ,τ)-derivations on triangular algebras[J]. Special Materices, 2018, 6(1):216-228.
[11] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebras[J]. Linear Algebra and its Applications, 2010, 432(10):2615-2622.
[12] VISHKI H R E, MIRZAVAZIRI M, MOAFIAN F. Jordan higher derivations on trivial extension algebras[J]. Communications of the Korean Mathematical Society, 2016, 31(2):247-259.
[1] PANG Yong-feng, WEI Yin, WANG Quan. Some properties of Drazin order [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 33-42.
[2] GAO Shi-juan, ZHANG Jian-hua. Characterization of (α, β)-derivation on rings with idempotents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 1-5.
[3] FEI Xiu-hai, ZHANG Jian-hua. Linear maps on triangular algebras for which the space of all inner derivations is Lie invariant [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 79-83.
[4] FEI Xiu-hai, DAI Lei, ZHU Guo-wei. Nonlinear Jordan higher derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 50-58.
[5] ZHANG Xia, ZHANG Jian-hua. Higher ξ-Lie derivable maps on triangular algebras at reciprocal elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 79-84.
[6] SHAO Yong. Semilattice-ordered completely regular periodic semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1-5.
[7] WU Li, ZHANG Jian-hua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 42-47.
[8] YANG Yuan, ZHANG Jian-hua. A local characterization of centralizers on B(H) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 1-4.
[9] LIU Cai-ran, SONG Xian-mei. Quadratic residue codes over Fl+vFl+v2Fl [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 45-49.
[10] LIN Ping-feng, ZENG Wei, ZENG Chun-yi. Idempotents of semigroup PΓ(Λ×Λ) of binary relations determined by the semilattice Γ on the set Λ [J]. J4, 2013, 48(8): 36-40.
[11] HU Li-xia, ZHANG Jian-hua. Lie higher derivable mappings of triangular algebras at zero points [J]. J4, 2013, 48(4): 5-9.
[12] XIE Tao, ZUO Ke-zheng. [J]. J4, 2013, 48(4): 95-103.
[13] LUO Yong-gui, XU Bo, YOU Tai-jie. On the rank and idempotent rank of each star ideal of the semigroup PHn [J]. J4, 2013, 48(2): 42-48.
[14] LUO Yong-gui. Non-group rank and relative rank of the semigroup W(n,r) [J]. J4, 2013, 48(12): 70-74.
[15] ZHAO Ping. On the idempotent ranks of the semigroup V(n,r) [J]. J4, 2012, 47(2): 78-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!