JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (11): 42-49.doi: 10.6040/j.issn.1671-9352.0.2021.518

Previous Articles    

Generalized 3-connectivity of folded hypercubes

WANG Jun-zhen1, ZHANG Shu-min1,2*, GE Hui-fen3   

  1. 1. College of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China;
    2. Academy of Plateau, Science and Sustainability, Xining 810008, Qinghai, China;
    3. College of Computing, Qinghai Normal University, Xining 810008, Qinghai, China
  • Published:2022-11-10

Abstract: Let G be a connected graph and S⊆V(G). T=(V ',E ')is an S-Steiner tree which containing all the vertices in is S of G and make S⊆V '. Two S-trees T and T ' are said to be internally disjoint if E(T)∩E(T ')= and V(T)∩V(T ')=S. κ(S)is defined as the maximum number of the internally disjoint S-trees in G. The generalized k-connectivity(2≤k≤n)κk(G)of G is defined as κk(G)=min{κ(S)|S⊆V(G)and |S|=k}. Clearly, κ2(G)=κ(G). κ3(FQn)=n is proved where FQn is n-dimensional folded hypercube.

Key words: generalized connectivity, Steiner tree, folded hypercube

CLC Number: 

  • O157
[1] BONDY J A, MURTY U S R. Graph Theory[M]. New York: Spring, 2008.
[2] WHINEY H. Congruent graphs and connectivity of graphs[J]. Math Soc, 1932, 54:150-168.
[3] CHARTRAND G, KAPOOR S F, LESNINK L. Generalized connectivity in graphs[J]. Bombay Math, 1984, 2:1-6.
[4] SUN Yuefang, LI Xueliang, MAO Yapin, et al. Note on the generalized connectivity[J]. ARS Combinatoria: An Australian-Canadian Journal of Combinatorics, 2014, 114:193-202.
[5] LI Shasha, LI Xueliang, ZHOU Wenli. Sharp bounds for the generalized connectivity κ3(G)[J]. Discrete Math, 2010, 310:2147-2163.
[6] LI Hengzhe, MENG Jixiang, MA Yingbin, et al. Steiner tree packing number and tree connectivity[J]. Discrete Math, 2018, 341:1945-1951.
[7] CHARTRAND G, OKAMOTO F, ZHANG Ping. Rainbow trees in graphs and generalized connectivity[J]. Networks, 2010, 55(4):360-367.
[8] LI Hengzhe, LI Xueliang, SUN Yuefang. The generalized 3-connectivity of Cartesian product graphs[J]. Discrete Math Theor Comput Sci, 2012, 14(1):43-54.
[9] LI Hengzhe, MA Yingbin, YANG Weihua. The generalized 3-connectivity of graph products[J]. Appl Math Comput, 2017, 295:77-83.
[10] LI Shasha, LI Wei, LI Xueliang. The generalized connectivity of complete bipartite graphs[J]. ARS Combin, 2012, 104:65-79.
[11] ZHAO Shuli, HAO Rongxia, WU Jie. The generalized 3-connectivity of some regular networks[J]. Parallel Distrib Comput, 2019, 133:18-29.
[12] ZHAO Shuli, HAO Rongxia, WU Jie. The generalized connectivity of (n,k)-bubble-sort graphs[J]. Comput, 2019, 62:1277-1283.
[13] ZHAO Shuli, HAO Rongxia. The generalized connectivity of alternating group graphs and(n,k)-star graphs[J]. Discrete Appl Math, 2018, 251:310-321.
[14] LI Shasha, SHI Yongtang, TU Jianhua. The generalized 3-connectivity of cayley graphs on symmetric groups generated by trees and cycles[J]. Graphs Combin, 2017, 33:1195-1209.
[15] LIN Shangwei, ZHANG Qianhua. The generalized 4-connectivity of hypercubes[J]. Discret Appl Math, 2017, 220:60-67.
[16] ZHAO Shuli, HAO Rongxia, CHENG E. Two kinds of generalized connectivity of dual cubes[J]. Discret Appl Math, 2019, 257:306-316.
[17] ZHAO Shuli, HAO Rongxia, WU Jie. The generalized 4-connectivity of hierarchical cubic networks[J]. Discret Appl Math, 2021, 289:194-206.
[18] LI Xueliang, MAO Yaping. A survey on the generalized connectivity of graphs[J/OL]. arXiv: 1207.1838.
[19] AMAWY E, ATIFI A. Properties and performance of folded hypercubes[J]. IEEE Transactions on Parallel and Distributed Systems, 1991, 2(1):131-142.
[20] LIU Jiabao, PAN Xiangfeng, CAO Jinde. Some properties on Estrada index of folded hypercubes networks[J]. Abstract and Applied Analysis, 2014: 1-6.
[21] PARK J S, DAVIS N J. The folded hypercube ATM switches[C] //The Proceedings of IEEE International Conference on Networking, Part II. [S.l.] :[s.L] , 2001: 370-379.
[22] PARK J S, DAVIS N J. Modeling the folded hypercube ATM switches[C] //The Proceedings of OPNETWORK. [S.l.] :[s.L] , 2001.
[23] LATIFI S. Simulation of PM21 network by folded hypercube[J]. IEE Proc E Comput Digit Tech, 1991, 138(6):397-400.
[24] ESMAEILI T, LAK G, RAD A N. 3D-FolH-NOC: a new structure for parallel processing and distributed systems[J]. Comput, 2012, 4(6):163-168.
[25] ZHANG Mimi, ZHOU Jinxin. On g-extra connectivity of folded hypercubes[J]. Theoretical Computer Science, 2015, 593:146-153.
[1] XIE Cheng-ling, MA Hai-cheng. Matching equivalent classes of union graphs of two vertices and a path [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 29-34.
[2] LI Jing-jing, BIAN Hong, YU Hai-zheng. Maximum matching forcing number in some special graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 71-76.
[3] WEI Zong-tian, FANG Hui, LI Yin-kui. On the facility systems reliability based on network location [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 77-82.
[4] LIU Jia, SUN Lei. Planar graphs without 4-cycle or chordal-6-cycle are(3,0,0)-colorable [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 31-40.
[5] CHEN Hong-ling, WANG Hui-juan, GAO Hong-wei. Linear arboricity of graphs embedded in a surface of non-negative Euler characteristic [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 17-22.
[6] . Vertex-distinguishing E-total coloring of complete bipartite graph K10,n with 10≤n≤90 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 23-30.
[7] ZHANG You, HUANG Li-na, LI Mu-chun. Vertex distinguishing edge coloring of a hexagonal system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 41-47.
[8] LI Mei-lian, DENG Qing-ying. Maple calculation of the transition polynomial of plane graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 27-34.
[9] . Vertex-distinguishing IE-total coloring and general-total coloring of K1,3,p and K1,4,p [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 53-60.
[10] LIU Xiao-hua, MA Hai-cheng. Order of matching energy and Hosoya index of Q-shape graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 61-65.
[11] ZHANG Jiang-yue, XU Chang-qing. Linear 2-arboricity of graphs with maximum average degree at most 4 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 7-10.
[12] CAO Ya-meng, LI Jiao, LI Guo-quan. On sumsets and translates of vector subspaces over finite fields [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 7-10.
[13] CHEN Hong-yu, ZHANG Li. Linear 2-arboricity of planar graphs with 4-cycles have no common vertex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 36-41.
[14] HE Yu-ping, WANG Zhi-wen, CHEN Xiang-en. Vertex-distinguishing total coloring of mC8 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 24-30.
[15] LI Ting-ting, LAO Hui-xue. On the mean value of a hybrid arithmetic function [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!