JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (5): 56-66.doi: 10.6040/j.issn.1671-9352.0.2023.416
WU Chenlong, LIU Ruikuan*, QI Zicheng
CLC Number:
[1] LIU Ruikan, YANG Jiayan. Magneto-hydrodynamical model for plasma[J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68:1-15. [2] LIU Ruikuan, YANG Jiayan. Global strong solutions of a 2D new magnetohydrodynamic system[J]. Applications of Mathematics, 2020, 65(1):105-120. [3] TEMAM R. Infinite-dimensional dynamical systems in mechanics and physics[M]. New York: Springer, 1997. [4] LUKASZEWICZ G. Long time behavior of 2D micropolar fluid flows[J]. Mathematical and Computer Modelling, 2001, 34(5/6):487-509. [5] MA Qingfeng, WANG Shouhong, ZHONG Chengkui. Necessary and sufficient conditions for the existence of global attractors for semigroups and applications[J]. Indiana University Mathematics Journal, 2001, 51(6):1541-1559. [6] LU Songsong, WU Hongqing, ZHONG Chengkui. Attractors for non-autonomous 2D Navier-Stokes equations with normal external force[J]. Discrete and Continuous Dynamical Systems, 2005, 13(3):701. [7] ZHONG Chengkui, YANG Meihua, SUN Chunyou. The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equation[J]. Journal of Differential Equations, 2006, 223(2):367-399. [8] 马天,汪守宏. 非线性演化方程的稳定性与分歧[M]. 北京:科学出版社,2007. MA Tian, WANG Shouhong. Stability and bifurcation of nonlinear evolution equations[M]. Beijing: Science Press, 2007. [9] CHEN Jiawen, CHEN Zhimin, DONG Boqing. Existence of H2-global attractors of two-dimensional micropolar fluid flows[J]. Journal of Mathematical Analysis and Applications, 2006, 322(2):512-522. [10] KLOEDEN P E, LANGA J A. Flattening, squeezing and the existence of random attractors[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2077):163-181. [11] CARVALHO A, LANGA J A, ROBINSON J. Attractors for infinite-dimensional non-autonomous dynamical systems[M]. Berlin: Springer, 2012. [12] GARCÍA LUENGO J M, MARÍN RUBIO P, REAL ANGUAS J, et al. Pullback attractors for the non-autonomous 2D Navier-Stokes equations for minimally regularforcing[J]. Discrete and Continuous Dynamical Systems(Series A), 2014, 34(1):203-227. [13] SUN Wenlong, LI Yeping. Pullback dynamical behaviors of the non-autonomous micropolar fluid flows with minimally regular force and moment[J]. Communications in Mathematical Sciences, 2018, 16(4):1043-1065. [14] ANH C, SON D. Pullback attractors for non-autonomous 2D MHD equations on some unbounded domains[J]. Annales Polonici Mathematici, 2015, 113(2):129-154. [15] SONG Xiaoya, XIONG Yangmin. Pullback attractors for 2D MHD equations with delays[J]. Journal of Mathematical Physics, 2021, 62(7):1-29. [16] SONG Xiaoya. Pullback attractors for 3D MHD equations with damping[J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73(2):1-16. [17] CAO Daomin, SONG Xiaoya, SUN Chunyou. Pullback attractors for 2D MHD equations on time-varying domains[J]. Discrete & Continuous Dynamical Systems(Series A), 2022, 42(2):643-677. |
[1] | Yanping WANG,Yuanfei LI. Continuous dependence of attractive-repulsive chemotactic systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 116-121, 126. |
[2] | Xiaoping WU,Gezi CHONG,Ziwen JIANG. Integrability and Birkhoff normal form of the dispersive Camassa-Holm equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 76-85. |
[3] | HAN Qing-xiu, LIU Hong-xia, WU Yun. Bifurcation phenomena and nonlinear wave solutions of BKK equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 88-94. |
[4] | DONG Li. Lower bounds for blow up time of two nonlinear wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 56-60. |
[5] | FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122. |
[6] | DONG Jian-wei, LOU Guang-pu, WANG Yan-ping. Uniqueness of stationary solutions to a simplified energy-transport model for semiconductors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 37-41. |
[7] | LÜ Hong-jie, LIU Jing-jing, QI Jing, LIU Shuo. Blow-up of a weakly dissipative μ-Hunter-Saxton equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 55-59. |
[8] | DONG Jian-wei, CHENG Shao-hua, WANG Yan-ping. Classical solutions to stationary one-dimensional quantum energy-transport model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 52-56. |
[9] | CHEN Zhi-hui, WANG Zhen-zhen, CHENG Yong-kuan*. Soliton solutions for quasilinear Schrdinger equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 58-62. |
[10] | LIU Yan-qin,XU Ming-yu and JIANG Xiao-yun . The fractional nonlinear convection-diffusion equation and its solution [J]. J4, 2007, 42(1): 35-39 . |
[11] | SHI Chang-guang . Multi-soliton solution of the Faddeev model [J]. J4, 2007, 42(7): 38-40 . |
[12] | ZHANG Shen-gui. Existence of solutions for fractional Kirchhoff-type equation with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 48-55. |
[13] | MENG Xi-wang, WANG Juan. Blow up of solutions to wave equations in the de Sitter spacetime [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 64-75. |
[14] | LIN Fu-biao, ZHANG Qian-hong. Solving explicit new travelling wave solutions of KdV-Burgers-Kuramoto equation by Riccati equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 24-31. |
[15] | WANG Hai-quan, CHONG Ge-zi. Local Gevrey regularity and analyticity of the solutions to the initial value problem associated with the two-component Novikov system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 56-63. |
|