JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (12): 86-91.doi: 10.6040/j.issn.1671-9352.0.2021.789

Previous Articles    

Outer McCoy condition for modules

LI Mei, CHENG Zhi   

  1. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, Anhui, China
  • Published:2022-12-05

Abstract: The notion of outer McCoy modules and linearly outer McCoy modules are introduced. Some properties of outer McCoy modules are established, and an example is given to show that a left McCoy module may not be a right outer McCoy module. A necessary and sufficient condition for outer McCoy modules over standardly graded algebras is also established.

Key words: McCoy module, outer McCoy module, linearly outer McCoy module, graded module

CLC Number: 

  • O153.3
[1] REGE M B, CHHAWCHHARIA S. Armendariz rings[J]. Proceedings of the Japan Academy, Series A: Mathematical Sciences, 1997, 73(1):14-17.
[2] NIELSEN P P. Semi-commutativity and the McCoy condition[J]. Journal of Algebra, 2006, 298(1):134-141.
[3] CAMILLO V, NIELSEN P P. McCoy rings and zero-divisors[J]. Journal of Pure and Applied Algebra, 2008, 212(3):599-615.
[4] CUI Jian, CHEN Jianlong. On McCoy modules[J]. Bulletin of the Korean Mathematical Society, 2011, 48(1):23-33.
[5] BAECK J, KIM N K, LEE Y, et al. Zero-divisor placement, a condition of Camillo, and the McCoy property[J]. Journal of Pure and Applied Algebra, 2020, 224(12):106432.
[6] ANDERSON D D, CHUN S M. McCoy modules and related modules over commutative rings[J]. Communications in Algebra, 2017, 45(6):2593-2601.
[7] KHURANA A, KHURANA D. Annihilators of polynomials[J]. Communications in Algebra, 2020, 48(1):57-62.
[8] ASSEM I, SIMSON D, SKOWRONSKI A. Elements of the representation theory of associative algebras[M]. London: Cambridge University Press, 2006.
[9] CHENG Zhi, WU Jingjing, ZHOU Yuye. McCoy rings of path algebras and truncated algebras[J]. Communications in Algebra, 2021, 49(7):3167-3175.
[1] YIN Jun-qi, YANG Gang. Gorenstein DG-injective complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(10): 28-33.
[2] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[3] ZHANG Cui-ping, LIU Ya-juan. Strongly Gorenstein C-injective module and strongly Gorenstein C-flat module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 24-30.
[4] GUO Hui-ying, ZHANG Cui-ping. Ext-strong Ding projective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 31-36.
[5] ZHAO Yang, ZHANG Wen-hui. Strongly Ding projective and strongly Ding injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 37-45.
[6] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[7] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[8] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[9] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[10] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[11] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[12] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[13] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[14] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[15] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!