您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (12): 108-115.doi: 10.6040/j.issn.1671-9352.0.2016.274

• • 上一篇    下一篇

模式收缩最小二乘回归子空间分割

陈晓云,廖梦真,陈慧娟   

  1. 福州大学数学与计算机科学学院, 福建 福州 350116
  • 收稿日期:2015-06-06 出版日期:2016-12-20 发布日期:2016-12-20
  • 作者简介:陈晓云(1970— ),女,博士,教授,研究方向为机器学习、模式识别、数据挖掘等. E-mail:c-xiaoyun@fzu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(71273053,11571074);福建省自然科学基金资助项目(2014J01009)

Pattern shrinking least square regression for subspace segmentation

CHEN Xiao-yun, LIAO Meng-zhen, CHEN Hui-juan   

  1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, Fujian, China
  • Received:2015-06-06 Online:2016-12-20 Published:2016-12-20

摘要: 基因表达数据聚类为肿瘤新类别的发现提供了重要手段。然而,直接对原始数据进行聚类会在一定程度上丢失数据本身隐含的流形结构信息,影响子空间分割方法的聚类效果。为解决这一问题,提出模式收缩最小二乘回归(pattern shrinking least square regression, PSLSR)子空间分割方法。该模型能够同时进行模式收缩和仿射矩阵的学习,并利用交替优化方法进行求解。在6个基因表达数据上的实验结果表明该方法优于现有子空间分割方法。

关键词: 基因表达数据, 模式收缩, 子空间分割, 交替优化

Abstract: Clustering of gene expression data is an important method to discover the new category of tumor. However, clustering directly on the original gene data will lose the hidden manifold structure information, and then affect the clustering effect of the subspace segmentation method. In order to solve this problem, the pattern shrinking least square regression model for subspace segmentation(PSLSR)is proposed. This model can perform pattern shrinking and learn the affine matrix of data simultaneously, and be solved by using the alternating optimization method. Experimental results on six gene expression data show that PSLSR significantly outperforms the existing subspace segmentation methods.

Key words: gene expression data, pattern shrinking, subspace segmentation, alternative optimization

中图分类号: 

  • TP311
[1] JIANG Daxin, TANG Chun, ZHANG Aidong. Cluster analysis for gene expression data: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(11):1370-1386.
[2] VIDAL R. A tutorial on subspace clustering[J]. IEEE Signal Processing Magazine, 2010, 28(2):52-68.
[3] CANDÈS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM(JACM), 2011, 58(3):11:1-37.
[4] VIDAL R, FAVARO P. Low rank subspace clustering(LRSC)[J]. Pattern Recognition Letters, 2014, 43:47-61.
[5] HOU Chenping, NIE Feiping, JIAO Yuanyuan, et al. Learning a subspace for clustering via pattern shrinking[J]. Information Processing and Management, 2013, 49(4):871-883.
[6] ZHOU Dengyong, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[J]. Advances in Neural Information Processing Systems, 2004, 16(16):321-328.
[7] ELHAMIFAR E, VIDAL R. Sparse subspace clustering[C] //IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2009). New York: IEEE, 2009: 2790-2797.
[8] LIU Guangcan, LIN Zhouchen, YU Yong. Robust subspace segmentation by low-rank representation[C/OL] //Proceedings of the 27th International Conference on Machine Learning(ICML-10). 2010: 663-670.[2015-02-06].http://icml2010.haifa.il.ibm.com/papers/521.pdf.
[9] LU Canyi, MIN Hai, ZHAO Zhongqiu, et al. Robust and efficient subspace segmentation via least squares regression[M] //FITZGIBBON A, LAZEBNIK S, PERONA P, et al. Lecture Notes in Computer Science. Berlin: Springer, 2012: 347-360.
[10] FAVARO P, VIDAL R, RAVICHANDRAN A. A closed form solution to robust subspace estimation and clustering[C] //IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2011: 1801-1807.
[11] NIYOGI X. Locality preserving projections [M] //THRUN S, SAUL K, SCHOLKOPF B. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2004, 16:153-160.
[12] CAI Den, HE Xiaofei, WU Xiaoyun, et al. Non-negative matrix factorization on manifold[C] //IEEE International Conference on Data Mining(ICDM2008). Los Alamitos: IEEE Computer Society, 2008: 63-72.
[13] SHI Jianbo, MALIK J. Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.
[14] YU Lei, DING C, LOSCALZO S. Stable feature selection via dense feature groups[C] //Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2008: 803-811.
[1] 晏燕,郝晓弘. 差分隐私密度自适应网格划分发布方法[J]. 山东大学学报(理学版), 2018, 53(9): 12-22.
[2] 随云仙,刘勇. 基于二步邻居拓扑的E-Burt结构洞检测算法[J]. 山东大学学报(理学版), 2017, 52(9): 59-68.
[3] 张中军,张文娟,于来行,李润川. 基于网络距离和内容相似度的微博社交网络社区划分方法[J]. 山东大学学报(理学版), 2017, 52(7): 97-103.
[4] 毕晓迪,梁英,史红周,田辉. 一种基于隐私偏好的二次匿名位置隐私保护方法[J]. 山东大学学报(理学版), 2017, 52(5): 75-84.
[5] 董红斌,苟乃康,杨雪. 基于兴趣度的广告拍卖模型研究[J]. 山东大学学报(理学版), 2017, 52(3): 1-7.
[6] 李钊,孙占全,李晓,李诚. 基于信息损失量的特征选择方法研究及应用[J]. 山东大学学报(理学版), 2016, 51(11): 7-12.
[7] 刘大福,苏旸. 一种基于证据的软件可信性度量模型[J]. 山东大学学报(理学版), 2016, 51(11): 58-65.
[8] 高元照,李炳龙,吴熙曦. 基于物理内存的注册表逆向重建取证分析算法[J]. 山东大学学报(理学版), 2016, 51(9): 127-136.
[9] 翟鹏,李登道. 基于高斯隶属度的包容性指标模糊聚类算法[J]. 山东大学学报(理学版), 2016, 51(5): 102-105.
[10] 邓松. 面向旅游人文信息集成的Web数据源选择[J]. 山东大学学报(理学版), 2016, 51(3): 70-76.
[11] 李瑞霞, 刘仁金, 周先存. 基于哈希表的MapReduce算法优化[J]. 山东大学学报(理学版), 2015, 50(07): 66-70.
[12] 吴熙曦, 李炳龙, 张天琪. 基于KNN的Android智能手机微信取证方法[J]. 山东大学学报(理学版), 2014, 49(09): 150-153.
[13] 卢琦蓓1,2,郭飞鹏3. 基于改进型FP-Tree的分布式关联分类算法[J]. 山东大学学报(理学版), 2014, 49(1): 71-75.
[14] 戚丽丽,孙静宇*,陈俊杰. 基于均模型的IBCF算法研究[J]. J4, 2013, 48(11): 105-110.
[15] 朱国红 石冰 邢晓娜. 基于特征点选择的聚类算法研究[J]. J4, 2009, 44(9): 40-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!