您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (6): 15-22.doi: 10.6040/j.issn.1671-9352.0.2021.135

• • 上一篇    

一类乘法幂等半环的格林关系

王俊玲,邵勇*   

  1. 西北大学数学学院, 陕西 西安 710127
  • 发布日期:2022-06-10
  • 作者简介:王俊玲(1996— ),女,硕士研究生,研究方向为半环代数理论. E-mail:1600195870@qq.com*通信作者简介:邵勇(1980— ),男,教授,研究方向为半环代数理论. E-mail:yongshaomath@126.com
  • 基金资助:
    国家自然科学基金资助项目(11971383,11801239);陕西省自然科学基金资助项目(2020JM-425)

Greens relations on a class of semiring which multiplicative reduct is an idempotent semigroup

WANG Jun-ling, SHAO Yong*   

  1. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China
  • Published:2022-06-10

摘要: 研究了满足附加恒等式 x+x+x≈x, 2x+2y≈2(x+y)的乘法幂等半环, 给出了与该半环的乘法半群(加法半群)的格林关系相关的二元关系(·overL)∧(+overD),(·overL)∧(+overL),(·overL)∧(+overR),(+overL)∧(·overD)〓的刻画, 得到了这些二元关系是同余的充要条件, 进而证明了由这些同余确定的半环类是簇。

关键词: 半环, 簇, 同余, 格林关系

Abstract: The multiplicatively idempotent semirings satisfying the identities x+x+x=x, 2x+2y=2(x+y) are studied. The characterizations of the binary relations(·overL)∧(+overD),(·overL)∧(+overL),(·overL)∧(+overR),(+overL)∧(·overD)related to the Greens relation of the multiplicative semigroups(additive semigroups)of the semirings are given, and the sufficient and necessary conditions which make these binary relations be congruences are obtained. Moreover, the classes of semirings which are determined by these congruences are proved to be semiring varieties.

Key words: semiring, variety, congruences, Greens relations

中图分类号: 

  • O151.21
[1] VANDIVER H S. Note on a simple type of algebra in which the cancellation law of addition does not hold[J]. Bulletin of the American Mathematical Society, 1934, 40(12):914-920.
[2] HOWIE J M. Fundamentals of semigroup sheory[M] //Algebra Colloquium. London: Clarendon Press, 1995.
[3] GREEN J A. The structure of semigroups[J]. Ann Math, 1951, 54(2):163-172.
[4] PETRICH M, REILLY N R. Completely regular semigroup[M]. New York: Wiley, 1999.
[5] 郭聿琦,宫春梅,任学明.关于半群上格林关系的一个来龙去脉的综述(英文)[J]. 山东大学学报(理学版), 2010, 45(8):1-18. GUO Yuqi, GONG Chunmei, REN Xueming. A survey on the origin and developments of Greens relations on semigroups[J]. Journal of Shandong University(Natural Science), 2010, 45(8):1-18.
[6] CHENG Y L, SHAO Y. Semiring varieties related to multiplicative Greens relations on a semiring[J]. Semigroup Forum, 2020, 101(3):571-584.
[7] DAMLIJANOVIC N, CIRIC M, BOGDANOVIC S. Congruence openings of additive Greens relations on a semiring[J]. Semiring Forum, 2011, 82(3):437-454.
[8] ZHAO X Z, SHUM K P, GUO Y Q. L-subvarieties of the variety of idempotent semirings[J]. Algebra Univers, 2001, 46(1/2):75-96.
[9] PASTIJN F, ZHAO X Z. Greens D -relation for the multiplicative reduct of an idempotent semiring[J]. Arch Math(Brno), 2000, 36(2):77-93.
[10] ZHAO X Z, GUO Y Q, SHUM K P. D -subvarieties of the variety of idempotent semirings[J]. Algebra Colloquium, 2002, 9:15-28.
[11] 练利锋, 任苗苗, 陈益智. 关于一类半环上的格林关系的若干研究[J]. 纯粹数学与应用数学, 2014, 30(4):420-427. LIAN Lifeng, REN Miaomiao, CHEN Yizhi. Several studies of Greens relations on a class of semiring[J]. Pure and Applied Mathematics, 2014, 30(4):420-427.
[12] 王爱法. 满足某些恒等式的半环上的格林关系[J]. 西南大学学报(自然科学版), 2017, 39(12):67-73. WANG Aifa. Greens relations in semirings satisfying some identities[J]. Journal of Southwest University(Natural Science Edition), 2017, 39(12):67-73.
[13] VECHTOMOV E M, PETROV A A. Multiplicatively idempotent semirings[J]. Journal of Mathematical Sciences, 2015, 206(6):634-653.
[14] BURRIS S, SANKAPPANAVAR H P. A course in universal algebra[M]. New York: Springer-Verlag, 1981.
[1] 王晶,宫春梅. Tropical矩阵半群[J]. 《山东大学学报(理学版)》, 2022, 57(2): 50-55.
[2] 崔倩,宫春梅,王惠. 半适当半群上Rees矩阵半群的(~)-好同余[J]. 《山东大学学报(理学版)》, 2022, 57(2): 61-66.
[3] 魏孟君,李刚. 左Clifford双半环的性质与结构[J]. 《山东大学学报(理学版)》, 2021, 56(8): 45-48.
[4] 程彦亮,邵勇. 半环的格林关系所确定的半环簇[J]. 《山东大学学报(理学版)》, 2021, 56(4): 1-7.
[5] 宫春梅,王惠,吴丹丹. 超富足半群上(*)-好同余研究[J]. 《山东大学学报(理学版)》, 2020, 55(8): 98-101.
[6] 宫春梅,张俊梅. 正则纯正幂么半群并半群上的(~)-好同余[J]. 《山东大学学报(理学版)》, 2020, 55(4): 6-12.
[7] 曹发生,肖方. 模态代数的主同余[J]. 《山东大学学报(理学版)》, 2020, 55(2): 104-108.
[8] 曹发生. Tarski代数和模态代数的主同余[J]. 《山东大学学报(理学版)》, 2020, 55(10): 20-23.
[9] 李小朝. 自由半线性空间上基于同余的上(下)近似[J]. 《山东大学学报(理学版)》, 2020, 55(10): 15-19.
[10] 段然. 一个二元二次同余方程解的计数[J]. 《山东大学学报(理学版)》, 2019, 54(8): 108-120.
[11] 刘祖华,郭聿琦. 稀疏语言与r-析取语言的连接[J]. 《山东大学学报(理学版)》, 2019, 54(6): 2-7.
[12] 吴丹丹,宫春梅. 正规纯正幂幺半群并半群上的(~)-好同余[J]. 《山东大学学报(理学版)》, 2019, 54(4): 45-53.
[13] 李宁英,郭继东,海进科. 具有Abel直因子的群到有限群间的同态个数[J]. 《山东大学学报(理学版)》, 2019, 54(12): 59-62.
[14] 崔朝阳,孙甲琦,徐松艳,蒋鑫. 适用于集群无人机的自组网安全分簇算法[J]. 山东大学学报(理学版), 2018, 53(7): 51-59.
[15] 宫春梅,冯丽霞,任学明. 完全J *,~-单半群上的(*,~)-好同余[J]. 山东大学学报(理学版), 2018, 53(6): 11-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!