《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (10): 34-38.doi: 10.6040/j.issn.1671-9352.0.2021.697
• • 上一篇
高昕昭,谢云丽*
GAO Xin-zhao, XIE Yun-li*
摘要: 利用范畴化的方法,通过建立从丛倾斜代数的有限生成模范畴中不可分解的刚性对象,到对应的丛代数中丛变量的Caldero-Chapoton公式,证明Fomin-Zelevinsky关于丛代数中丛单项式的线性无关猜想对G2型丛代数成立。
中图分类号:
[1] FOMIN S, ZELEVINSKY A. Cluster algebras I: foundations[J]. Journal of the American Mathematical Society, 2002, 15(2):497-529. [2] FOMIN S, ZELEVINSKY A. Cluster algebras IV: coefficients[J]. Compositio Mathematica, 2007, 143(1):112-164. [3] GROSS M, HACKING P, KEEL S, et al. Canonical bases for cluster algebras[J]. Journal of the American Mathematical Society, 2018, 31(2):497-608. [4] CALDERO P, KELLER B. From triangulated categories to cluster algebras[J]. Inventiones Mathematicae, 2008, 172:169-211. [5] DEMONET L. Categorification of skew-symmetrizable cluster algebras[J]. Algebras and Representation Theory, 2010, 14(6):1087-1162. [6] GEIB C, LECLERC B, SCHRÖER J. Generic bases for cluster algebras and the Chamber Ansatz[J]. Journal of the American Mathematical Society, 2012, 25(1):121-176. [7] IRELLI C G, DANIEL L-F A. Quivers with potentials associated to triangulated surfaces, part III: tagged triangulations and cluster monomials[J]. Compositio Mathematica, 2012, 148(6):1833-1866. [8] FOMIN S, SHAPIRO M, THURSTON D. Cluster algebras and triangulated surfaces, part I: cluster complexes[J]. Acta Mathematica, 2008, 201(1):83-146. [9] MUSIKER G, SCHIFFLER R, WILLIAMS L. Bases for cluster algebras from surfaces[J]. Compositio Mathematica, 2012, 149(2):217-263. [10] DERKSEN H, WEYMAN J, ZELEVINSKY A. Quivers with potentials and their representations II: applications to cluster algebras[J]. Journal of the American Mathematical Society, 2010, 23(3):749-790. [11] PLAMONDON P-G. Cluster algebras via cluster categories with infinite-dimensional morphism spaces[J]. Compositio Mathematica, 2012, 147(6):1921-1954. [12] IRELLI G C, KELLER B, DANIEL L-F A, et al. Linear independence of cluster monomials for skew-symmetric cluster algebras[EB/OL].(2012-03-06)[2020-04-01]. arXiv:1203.1307[math.RT]. [13] HAPPEL D. Auslander-Reiten triangles in derived categories of finite-dimensional algebras[J]. Proceedings of the American Mathematical Society, 1991, 12(3):641-648. [14] LADKANI S. 2-Calabi-Yau-tilted algebras that are not Jacobian[EB/OL].(2014-03-26)[2020-04-01]. arXiv:1403.6814 [math.RT]. [15] GEIB C, LECLERC B, SCHRÖER J. Quivers with relations for symmetrizable Cartan matrices I: foundations[J]. Inventiones Mathematicae, 2016, 209(1):61-158. [16] IYAMA O, YOSHINO Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules[J]. Inventiones Mathematicae, 2008, 172(1):117-168. [17] ADACHI T, IYAMA O, REITEN I. τ-tilting theory[J]. Compositio Mathematica, 2014, 150(3):415-452. [18] CHANG Wen, ZHANG Jie, ZHU Bin. On support -tilting modules over endomorphism algebras of rigid objects[J]. Acta Mathematica Sinica, 2015, 31(9):1508-1516. [19] LIU Pin, XIE Yunli. On the relation between maximal rigid objects and -tilting modules[J]. Colloquium Mathematicum, 2016, 142:169-178. [20] PALU Y. Cluster characters for 2-Calabi-Yau triangulated categories[J]. Annales de lInstitut Fourier, 2008, 58(6):2221-2248. [21] PLAMONDON P-G. Cluster characters for cluster categories with infinite-dimensional morphism spaces[J]. Advances in Mathematics, 2011, 227(1):1-39. [22] CALDERO P, KELLER B. From triangulated categories to cluster algebras[J]. Inventiones Mathematicae, 2008, 172(1):169-211. [23] PALU Y. Cluster algebras as Hall algebras of quiver representations[J]. Commentarii Mathematici Helvetic, 2006, 81(3):596-616. |
[1] | 冯清,黄菊. Monoidal范畴的两种构造[J]. 山东大学学报(理学版), 2016, 51(4): 30-34. |
[2] | 刘洋1,王正萍2,许庆兵2. Gabriel单子与模范畴的局部化[J]. 山东大学学报(理学版), 2014, 49(2): 24-28. |
[3] | 刘宏锦,刘利敏. 三角范畴偏silting对象的补[J]. 《山东大学学报(理学版)》, 2019, 54(4): 67-71. |
[4] | 黄菊,范馨香. 完备范畴的极限范畴与η-扩张[J]. 《山东大学学报(理学版)》, 2020, 55(8): 43-47. |
[5] | 杨婷,谢云丽. 高维刚性子范畴和t-结构[J]. 《山东大学学报(理学版)》, 2020, 55(12): 69-75. |
[6] | 郑敏,陈清华. 三角范畴上t-结构的Ki-群[J]. 《山东大学学报(理学版)》, 2020, 55(8): 48-53. |
|