《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (12): 64-70.doi: 10.6040/j.issn.1671-9352.0.2022.044
• • 上一篇
邓伟娜1,2,赵宪钟1*
DENG Wei-na1,2, ZHAO Xian-zhong1*
摘要: 研究保持二元布尔半环上矩阵的传递闭包的线性算子,给出保持传递闭包的可逆线性算子的刻画,并证明当矩阵的阶n≥2时,强保持传递闭包的线性算子一定是可逆的。
中图分类号:
[1] BEASLEY L B, GUTERMAN A E. Linear preservers of extremes of rank inequalities over semirings: the factor rank[J]. Journal of Mathematical Sciences(New York), 2005, 131(5):5919-5938. [2] BEASLEY L B, PULLMAN N J. Linear operators preserving idempotent matrices over fields[J]. Linear Algebra and its Applications, 1991, 146:7-20. [3] BEASLEY L B, PULLMAN N J. Linear operators strongly preserving idempotent matrices over semirings[J]. Linear Algebra and its Applications, 1992, 160:217-229. [4] SONG S Z, KANG K T. Linear maps that preserve commuting pairs of matrices over general Boolean algebra[J]. Journal of the Korean Mathematical Society, 2006, 43(1):77-86. [5] SONG S Z, KANG K T, BEASLEY L B. Idempotent matrix preservers over Boolean algebras[J]. Journal of the Korean Mathematical Society, 2007, 44(1):169-178. [6] KANG K T, SONG S Z, JUN Y B. Linear operators that strongly preserve regularity of fuzzy matrices[J]. Mathematical Communications, 2010, 15(1):243-254. [7] GUTERMAN A, JOHNSON M, KAMBITES M. Linear isomorphisms preserving Greens relations for matrices over anti-negative semifields[J]. Linear Algebra and its Applications, 2018, 545:1-14. [8] GUTERMAN A, JOHNSON M, KAMBITES M, et al. Linear functions preserving Greens relations over fields[J]. Linear Algebra and its Applications, 2021, 611:310-333. [9] GUTERMAN A, KREINES E, THOMASSEN C. Linear transformations of tropical matrices preserving the cyclicity index[J]. Special Matrices, 2021, 9(1):112-118. [10] 吴校贵, 张建华. 全矩阵代数上保 Jacobi 恒等式的线性映射[J]. 山东大学学报(理学版), 2009, 44(1):49-52. WU Xiaogui, ZHANG Jianhua. Linear maps preserving Jacobi identity on the full matrix algebras[J]. Journal of Shandong University(Natural Science), 2009, 44(1):49-52. [11] 任苗苗, 邵勇, 赵宪钟. 保持两类特殊半环上矩阵{1}-逆的线性算子[J]. 西北大学学报(自然科学版),2012, 42(1):7-11. REN Miaomiao, SHAO Yong, ZHAO Xianzhong. Linear operators preserving {1}-inverses of matrices over two special classes of semirings[J]. Journal of Northwest University(Natural Science Edition), 2012, 42(1):7-11. [12] 杨阳, 任苗苗, 邵勇. 保持 ai-半环上矩阵的Moore-Penrose逆的线性算子[J].计算机工程与应用, 2015, 51(8):37-41. YANG Yang, REN Miaomiao, SHAO Yong. Linear operators preserving Moore-Penrose inverses of matrices over ai-semirings[J]. Computer Engineering and Applications, 2015, 51(8):37-41. [13] DENG Weina, REN Miaomiao, YU Baomin. Linear preservers for matrices over a class of semirings[J/OL]. Linear and Multilinear Algebra, 2021[2022-03-28]. https://doi.org/10.1080/03081087.2021.1969328. [14] GOLAN J S. Semirings and their applications[M]. Dordrecht: Springer, 1999. |
[1] | 胡玉文,徐久成,徐天贺. 决策演化集的伯努利移位[J]. 《山东大学学报(理学版)》, 2022, 57(8): 13-20. |
[2] | 李心雨,范辉,刘惊雷. 基于自适应图调节和低秩矩阵分解的鲁棒聚类[J]. 《山东大学学报(理学版)》, 2022, 57(8): 21-38. |
[3] | 卢鹏丽,栾睿,郭育红. 图的路(无符号)拉普拉斯谱半径及其能量[J]. 《山东大学学报(理学版)》, 2022, 57(7): 14-21. |
[4] | 柳利芳,马园园. 基于多视角对称非负矩阵分解的跨模态信息检索方法[J]. 《山东大学学报(理学版)》, 2022, 57(7): 65-72. |
[5] | 金铭,陈锦坤. 基于图论的协调多尺度决策表的最优尺度约简[J]. 《山东大学学报(理学版)》, 2022, 57(6): 74-83. |
[6] | 张海东,王维忠. 混合图的埃尔米特-广义Randic拟拉普拉斯矩阵和埃尔米特-广义Randic关联能量[J]. 《山东大学学报(理学版)》, 2022, 57(3): 78-84. |
[7] | 唐国亮,陈玲巧,狄振兴. 强右极小内射, semiperfect, 右 PF, clean n阶三角矩阵环的等价刻画[J]. 《山东大学学报(理学版)》, 2022, 57(2): 8-13. |
[8] | 崔倩,宫春梅,王惠. 半适当半群上Rees矩阵半群的(~)-好同余[J]. 《山东大学学报(理学版)》, 2022, 57(2): 61-66. |
[9] | 吴一凡,王广富. 平面四角链距离谱半径的极图[J]. 《山东大学学报(理学版)》, 2022, 57(2): 84-91. |
[10] | 杨银银,张翠萍. 形式三角矩阵环上的 Gorenstein FP-内射模[J]. 《山东大学学报(理学版)》, 2022, 57(2): 38-44. |
[11] | 王晶,宫春梅. Tropical矩阵半群[J]. 《山东大学学报(理学版)》, 2022, 57(2): 50-55. |
[12] | 费秀海,张海芳. 广义矩阵代数上一类非全局非线性三重高阶可导映射[J]. 《山东大学学报(理学版)》, 2022, 57(10): 97-105. |
[13] | 牛韶花,杨刚. 形式三角矩阵环上的n-Gorenstein投射模[J]. 《山东大学学报(理学版)》, 2022, 57(10): 44-49. |
[14] | 郝宏艳,李愿. 幂等算子的左星序[J]. 《山东大学学报(理学版)》, 2021, 56(8): 39-44. |
[15] | 吴德军,周慧. 三角矩阵环上Gorenstein FP-内射模的刻画[J]. 《山东大学学报(理学版)》, 2021, 56(8): 86-93. |
|