您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (12): 64-70.doi: 10.6040/j.issn.1671-9352.0.2022.044

• • 上一篇    

保持二元布尔半环上矩阵的传递闭包的线性算子

邓伟娜1,2,赵宪钟1*   

  1. 1.西北大学数学学院, 陕西 西安 710127;2.黄淮学院数学与统计学院, 河南 驻马店 463000
  • 发布日期:2022-12-05
  • 作者简介:邓伟娜(1983— ),女,博士研究生,研究方向为半环代数理论. E-mail:dwei2002@163.com*通信作者简介:赵宪钟(1961— ),男,博士,教授,博士生导师,研究方向为半环代数理论. E-mail:zhaoxz@nwu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11971383)

Linear operators preserving transitive closures of matrices over the binary Boolean semiring

DENG Wei-na1,2, ZHAO Xian-zhong1*   

  1. 1. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China;
    2. School of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, Henan, China
  • Published:2022-12-05

摘要: 研究保持二元布尔半环上矩阵的传递闭包的线性算子,给出保持传递闭包的可逆线性算子的刻画,并证明当矩阵的阶n≥2时,强保持传递闭包的线性算子一定是可逆的。

关键词: 二元布尔半环, 矩阵, 线性算子, 传递闭包

Abstract: The linear operators which preserve transitive closures of matrices over the binary Boolean semiring are studied, the characterizations of invertible linear operators which preserve transitive closures of matrices are given, and it is shown that the strong preservers are invertible when the order of the matrices n≥2.

Key words: binary Boolean semiring, matrix, linear operator, transitive closure

中图分类号: 

  • O151.21
[1] BEASLEY L B, GUTERMAN A E. Linear preservers of extremes of rank inequalities over semirings: the factor rank[J]. Journal of Mathematical Sciences(New York), 2005, 131(5):5919-5938.
[2] BEASLEY L B, PULLMAN N J. Linear operators preserving idempotent matrices over fields[J]. Linear Algebra and its Applications, 1991, 146:7-20.
[3] BEASLEY L B, PULLMAN N J. Linear operators strongly preserving idempotent matrices over semirings[J]. Linear Algebra and its Applications, 1992, 160:217-229.
[4] SONG S Z, KANG K T. Linear maps that preserve commuting pairs of matrices over general Boolean algebra[J]. Journal of the Korean Mathematical Society, 2006, 43(1):77-86.
[5] SONG S Z, KANG K T, BEASLEY L B. Idempotent matrix preservers over Boolean algebras[J]. Journal of the Korean Mathematical Society, 2007, 44(1):169-178.
[6] KANG K T, SONG S Z, JUN Y B. Linear operators that strongly preserve regularity of fuzzy matrices[J]. Mathematical Communications, 2010, 15(1):243-254.
[7] GUTERMAN A, JOHNSON M, KAMBITES M. Linear isomorphisms preserving Greens relations for matrices over anti-negative semifields[J]. Linear Algebra and its Applications, 2018, 545:1-14.
[8] GUTERMAN A, JOHNSON M, KAMBITES M, et al. Linear functions preserving Greens relations over fields[J]. Linear Algebra and its Applications, 2021, 611:310-333.
[9] GUTERMAN A, KREINES E, THOMASSEN C. Linear transformations of tropical matrices preserving the cyclicity index[J]. Special Matrices, 2021, 9(1):112-118.
[10] 吴校贵, 张建华. 全矩阵代数上保 Jacobi 恒等式的线性映射[J]. 山东大学学报(理学版), 2009, 44(1):49-52. WU Xiaogui, ZHANG Jianhua. Linear maps preserving Jacobi identity on the full matrix algebras[J]. Journal of Shandong University(Natural Science), 2009, 44(1):49-52.
[11] 任苗苗, 邵勇, 赵宪钟. 保持两类特殊半环上矩阵{1}-逆的线性算子[J]. 西北大学学报(自然科学版),2012, 42(1):7-11. REN Miaomiao, SHAO Yong, ZHAO Xianzhong. Linear operators preserving {1}-inverses of matrices over two special classes of semirings[J]. Journal of Northwest University(Natural Science Edition), 2012, 42(1):7-11.
[12] 杨阳, 任苗苗, 邵勇. 保持 ai-半环上矩阵的Moore-Penrose逆的线性算子[J].计算机工程与应用, 2015, 51(8):37-41. YANG Yang, REN Miaomiao, SHAO Yong. Linear operators preserving Moore-Penrose inverses of matrices over ai-semirings[J]. Computer Engineering and Applications, 2015, 51(8):37-41.
[13] DENG Weina, REN Miaomiao, YU Baomin. Linear preservers for matrices over a class of semirings[J/OL]. Linear and Multilinear Algebra, 2021[2022-03-28]. https://doi.org/10.1080/03081087.2021.1969328.
[14] GOLAN J S. Semirings and their applications[M]. Dordrecht: Springer, 1999.
[1] 胡玉文,徐久成,徐天贺. 决策演化集的伯努利移位[J]. 《山东大学学报(理学版)》, 2022, 57(8): 13-20.
[2] 李心雨,范辉,刘惊雷. 基于自适应图调节和低秩矩阵分解的鲁棒聚类[J]. 《山东大学学报(理学版)》, 2022, 57(8): 21-38.
[3] 卢鹏丽,栾睿,郭育红. 图的路(无符号)拉普拉斯谱半径及其能量[J]. 《山东大学学报(理学版)》, 2022, 57(7): 14-21.
[4] 柳利芳,马园园. 基于多视角对称非负矩阵分解的跨模态信息检索方法[J]. 《山东大学学报(理学版)》, 2022, 57(7): 65-72.
[5] 金铭,陈锦坤. 基于图论的协调多尺度决策表的最优尺度约简[J]. 《山东大学学报(理学版)》, 2022, 57(6): 74-83.
[6] 张海东,王维忠. 混合图的埃尔米特-广义Randic拟拉普拉斯矩阵和埃尔米特-广义Randic关联能量[J]. 《山东大学学报(理学版)》, 2022, 57(3): 78-84.
[7] 唐国亮,陈玲巧,狄振兴. 强右极小内射, semiperfect, 右 PF, clean n阶三角矩阵环的等价刻画[J]. 《山东大学学报(理学版)》, 2022, 57(2): 8-13.
[8] 崔倩,宫春梅,王惠. 半适当半群上Rees矩阵半群的(~)-好同余[J]. 《山东大学学报(理学版)》, 2022, 57(2): 61-66.
[9] 吴一凡,王广富. 平面四角链距离谱半径的极图[J]. 《山东大学学报(理学版)》, 2022, 57(2): 84-91.
[10] 杨银银,张翠萍. 形式三角矩阵环上的 Gorenstein FP-内射模[J]. 《山东大学学报(理学版)》, 2022, 57(2): 38-44.
[11] 王晶,宫春梅. Tropical矩阵半群[J]. 《山东大学学报(理学版)》, 2022, 57(2): 50-55.
[12] 费秀海,张海芳. 广义矩阵代数上一类非全局非线性三重高阶可导映射[J]. 《山东大学学报(理学版)》, 2022, 57(10): 97-105.
[13] 牛韶花,杨刚. 形式三角矩阵环上的n-Gorenstein投射模[J]. 《山东大学学报(理学版)》, 2022, 57(10): 44-49.
[14] 郝宏艳,李愿. 幂等算子的左星序[J]. 《山东大学学报(理学版)》, 2021, 56(8): 39-44.
[15] 吴德军,周慧. 三角矩阵环上Gorenstein FP-内射模的刻画[J]. 《山东大学学报(理学版)》, 2021, 56(8): 86-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!