您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 110-119.doi: 10.6040/j.issn.1671-9352.0.2022.592

•   • 上一篇    下一篇

一类Riemann-Liouville分数阶发展方程mild解的存在性与近似可控性

冯玉欣(),杨和*()   

  1. 西北师范大学数学与统计学院,甘肃 兰州 730070
  • 收稿日期:2022-11-09 出版日期:2024-02-20 发布日期:2024-02-20
  • 通讯作者: 杨和 E-mail:fengyuxin202211@163.com;yanghe@nwnu.edu.cn
  • 作者简介:冯玉欣(1998—), 女, 硕士研究生, 研究方向为非线性泛函分析. E-mail: fengyuxin202211@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061062)

Existence and approximate controllability of mild solutions for a class of Riemann-Liouville fractional evolution equations

Yuxin FENG(),He YANG*()   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2022-11-09 Online:2024-02-20 Published:2024-02-20
  • Contact: He YANG E-mail:fengyuxin202211@163.com;yanghe@nwnu.edu.cn

摘要:

用线性算子余弦族理论和Schauder不动点定理证明Banach空间中一类Riemann-Liouville分数阶半线性发展方程mild解的存在性,并建立相应的控制系统的近似可控性结果。最后给出抽象结果的应用举例。

关键词: 分数阶发展方程, mild解, 近似可控性, 余弦族

Abstract:

The existence of mild solutions for a class of Riemann-Liouville fractional semilinear evolution equations in Banach space is proved by utilizing the cosine family theory of linear operators and Schauder′s fixed point theorem. The approximate controllability result is also established for the related control systems. An example is given to illustrate the application of abstract conclusions in the end.

Key words: fractional evolution equation, mild solution, approximate controllability, cosine family

中图分类号: 

  • O175.15
1 FECKAN M , WANG Jinrong , ZHOU Yong . Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators[J]. Journal of Optimization Theory and Applications, 2013, 156 (1): 79- 95.
doi: 10.1007/s10957-012-0174-7
2 CHANG Y K , PEI Y T , PONCE R . Existence and optimal controls for fractional stochastic evolution equations of Sobolev type via fractional resolvent operators[J]. Journal of Optimization Theory and Applications, 2019, 182 (2): 558- 572.
doi: 10.1007/s10957-018-1314-5
3 CHANG Y K , PEREIRA A , PONCE R . Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators[J]. Fractional Calculus and Applied Analysis, 2017, 20 (4): 963- 987.
doi: 10.1515/fca-2017-0050
4 ZHOU Yong , HE Jiawei . New results on controllability of fractional evolution systems with order α ∈ (1, 2)[J]. Evolution Equations and Control Theory, 2021, 10 (3): 491- 509.
doi: 10.3934/eect.2020077
5 DU Maolin , WANG Zaihua . Initialized fractional differential equations with Riemann-Liouville fractional-order derivative[J]. The European Physical Journal Special Topics, 2011, 193 (1): 49- 60.
doi: 10.1140/epjst/e2011-01380-8
6 HEYMANS N , PODLUBNY I . Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives[J]. Rheologica Acta, 2006, 45 (5): 765- 771.
doi: 10.1007/s00397-005-0043-5
7 KILBAS A A , SRIVASTAVA H M , TRUJILLO J J . Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006: 69- 70.
8 LIU Zhenhai , LI Xiuwen . Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatines[J]. SIAM Journal on Control and Optimization, 2015, 53 (4): 1920- 1933.
doi: 10.1137/120903853
9 TRAVIS C C , WEBB G F . Cosine families and abstract nonlinear second order differential equations[J]. Acta Mathematica Hungarica, 1978, 32 (1): 75- 96.
10 HE Jiawei , PENG Li . Approximate controllability for a class of fractional stochastic wave equations[J]. Computers Mathematics with Applications, 2019, 78 (5): 1463- 1476.
doi: 10.1016/j.camwa.2019.01.012
11 FATTORINI H O . Ordinary differential equations in linear topological spaces[J]. Journal of Difference Equations and Applications, 1968, 5, 72- 105.
12 GOU Haide , LI Yongxiang . Existence and approximate controllability of Hilfer fractional evolution equations in Banach spaces[J]. Journal of Applied Analysis Computation, 2021, 11 (6): 2895- 2920.
doi: 10.11948/20210053
13 TRAVIS C C , WEBB G F . Compactness, regularity, and uniform continuity properties of strongly continuous consine families[J]. Houston Journal of Mathematics, 1977, 3 (4): 555- 567.
[1] 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67.
[2] 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91.
[3] 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王刚,许信顺*. 一种新的基于多示例学习的场景分类方法[J]. J4, 2010, 45(7): 108 -113 .
[2] 陆玮洁,主沉浮,宋 翠,杨艳丽 . 中药郁金中无机离子的毛细管电泳法测定[J]. J4, 2007, 42(7): 13 -18 .
[3] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[4] 王 瑶,刘 建,王仁卿,* . 阿利效应及其对生物入侵和自然保护中小种群管理的启示[J]. J4, 2007, 42(1): 76 -82 .
[5] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[6] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[7] 韩亚飞,伊文慧,王文波,王延平,王华田*. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49(05): 1 -6 .
[8] 张丽,许玉铭 . σ1-空间及其性质[J]. J4, 2006, 41(5): 30 -32 .
[9] 李慧娟,尹海英,张学成,杨爱芳* . 转蔗糖: 蔗糖-1-果糖基转移酶基因提高烟草的耐旱性[J]. J4, 2007, 42(1): 89 -94 .
[10] 许传轲 陈月辉 赵亚欧. 基于改进伪氨基酸组成的蛋白质相互作用预测[J]. J4, 2009, 44(9): 17 -21 .