《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 110-119.doi: 10.6040/j.issn.1671-9352.0.2022.592
摘要:
用线性算子余弦族理论和Schauder不动点定理证明Banach空间中一类Riemann-Liouville分数阶半线性发展方程mild解的存在性,并建立相应的控制系统的近似可控性结果。最后给出抽象结果的应用举例。
中图分类号:
1 |
FECKAN M , WANG Jinrong , ZHOU Yong . Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators[J]. Journal of Optimization Theory and Applications, 2013, 156 (1): 79- 95.
doi: 10.1007/s10957-012-0174-7 |
2 |
CHANG Y K , PEI Y T , PONCE R . Existence and optimal controls for fractional stochastic evolution equations of Sobolev type via fractional resolvent operators[J]. Journal of Optimization Theory and Applications, 2019, 182 (2): 558- 572.
doi: 10.1007/s10957-018-1314-5 |
3 |
CHANG Y K , PEREIRA A , PONCE R . Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators[J]. Fractional Calculus and Applied Analysis, 2017, 20 (4): 963- 987.
doi: 10.1515/fca-2017-0050 |
4 |
ZHOU Yong , HE Jiawei . New results on controllability of fractional evolution systems with order α ∈ (1, 2)[J]. Evolution Equations and Control Theory, 2021, 10 (3): 491- 509.
doi: 10.3934/eect.2020077 |
5 |
DU Maolin , WANG Zaihua . Initialized fractional differential equations with Riemann-Liouville fractional-order derivative[J]. The European Physical Journal Special Topics, 2011, 193 (1): 49- 60.
doi: 10.1140/epjst/e2011-01380-8 |
6 |
HEYMANS N , PODLUBNY I . Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives[J]. Rheologica Acta, 2006, 45 (5): 765- 771.
doi: 10.1007/s00397-005-0043-5 |
7 | KILBAS A A , SRIVASTAVA H M , TRUJILLO J J . Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006: 69- 70. |
8 |
LIU Zhenhai , LI Xiuwen . Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatines[J]. SIAM Journal on Control and Optimization, 2015, 53 (4): 1920- 1933.
doi: 10.1137/120903853 |
9 | TRAVIS C C , WEBB G F . Cosine families and abstract nonlinear second order differential equations[J]. Acta Mathematica Hungarica, 1978, 32 (1): 75- 96. |
10 |
HE Jiawei , PENG Li . Approximate controllability for a class of fractional stochastic wave equations[J]. Computers Mathematics with Applications, 2019, 78 (5): 1463- 1476.
doi: 10.1016/j.camwa.2019.01.012 |
11 | FATTORINI H O . Ordinary differential equations in linear topological spaces[J]. Journal of Difference Equations and Applications, 1968, 5, 72- 105. |
12 |
GOU Haide , LI Yongxiang . Existence and approximate controllability of Hilfer fractional evolution equations in Banach spaces[J]. Journal of Applied Analysis Computation, 2021, 11 (6): 2895- 2920.
doi: 10.11948/20210053 |
13 | TRAVIS C C , WEBB G F . Compactness, regularity, and uniform continuity properties of strongly continuous consine families[J]. Houston Journal of Mathematics, 1977, 3 (4): 555- 567. |
[1] | 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67. |
[2] | 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91. |
[3] | 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21. |
|