《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 105-109.doi: 10.6040/j.issn.1671-9352.0.2022.512
Zheng XIN(),Dingguo WANG,Tiwei ZHAO*()
摘要:
主要研究正合范畴上的稳定函数, 以及用稳定函数构造挠类和挠自由类, 进而得到一类挠对。
中图分类号:
1 | MUMFORD D . Geometric invariant theory[M]. New York: Academic Press, 1965. |
2 | SCHOFIELD A . Semi-invariants of quivers[J]. Journal of the London Mathematical Society, 1991, 43 (3): 385- 395. |
3 |
KING A D . Moduli of representations of finite dimensional algebras[J]. The Quarterly Journal of Mathematics, 1994, 45 (4): 515- 530.
doi: 10.1093/qmath/45.4.515 |
4 |
RUDAKOV A . Stability for an Abelian category[J]. Journal of Algebra, 1997, 197, 231- 245.
doi: 10.1006/jabr.1997.7093 |
5 | BRUSTLE T , SMITH D , TREFFINGER H . Stability conditions and maximal Green sequences in Abelian categories[J]. Revista de la Union Matematica Argentina, 2022, 63 (1): 203- 221. |
6 |
DICKSON S E . A torsion theory for Abelian categories[J]. Transactions of the American Mathematical Society, 1966, 121, 223- 235.
doi: 10.1090/S0002-9947-1966-0191935-0 |
7 | BRIDGELAND T . Scattering diagrams, hall algebras and stability conditions[J]. Algebraic Geometry, 2017, 4 (5): 523- 561. |
8 | QUILLEN D. Higher algebraic K-theory: I[C]// Algebraic K-theory. Berlin: Springer, 1973, 341: 85-147. |
9 |
BUHLER T . Exact categories[J]. Expositiones Mathematicae, 2010, 28 (1): 1- 69.
doi: 10.1016/j.exmath.2009.04.004 |
10 |
ENOMOTO H . Schur̓s lemma for exact categories implies Abelian[J]. Journal of Algebra, 2021, 584, 260- 269.
doi: 10.1016/j.jalgebra.2021.05.017 |
11 | HASSOUN S, ROY S. Admissible intersection and sum property [EB/OL]. (2020-06-05)[2022-09-29]. http://arxiv.org/abs/1906.03246v3. |
[1] | 陈文静,李玲. n-Frobenius对[J]. 《山东大学学报(理学版)》, 2023, 58(2): 51-57. |
[2] | 苑乾乾,姚海楼. 关于silting余模[J]. 《山东大学学报(理学版)》, 2022, 57(2): 1-7. |
[3] | 赵俊秀,狄蓉蓉,狄振兴. n-IFP-分次内射模和n-IFP-分次平坦模[J]. 《山东大学学报(理学版)》, 2020, 55(2): 99-103. |
[4] | 张平儿,杨晓燕. 构造三角模型结构的新方法[J]. 《山东大学学报(理学版)》, 2020, 55(12): 97-102. |
[5] | 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107. |
|