您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 122-126.doi: 10.6040/j.issn.1671-9352.0.2023.111

• • 上一篇    

半群C F(n,r)的幂等元秩

龚何余,舒琴,赵平*   

  1. 贵州师范大学数学科学学院, 贵州 贵阳 550001
  • 发布日期:2024-10-10
  • 通讯作者: 赵平(1973— ),男,教授,博士生导师,研究方向为半群理论. E-mail:pingzhao731108@163.com
  • 基金资助:
    国家自然科学基金资助项目(12261022)

On the rank of semigroup C F(n,r)

GONG Heyu, SHU Qin, ZHAO Ping*   

  1. School of Mathematics Science, Guizhou Normal University, Guiyang 550001, Guizhou, China
  • Published:2024-10-10

摘要: 设Tn是Xn={1,2,…,n}上的全变换半群,对任意1≤r≤n,令F(n,r)={α∈Tn:iα=i, ∠i∈{1,2,…,r}},则F(n,r)是Tn的子半群。本文将研究半群F(n,r)的核C F(n,r)=〈E(F(n,r))〉,其中E(F(n,r))={α∈F(n,r)2=α},通过对F(n,r)幂等元的分析,得到半群C F(n,r)的秩和幂等元秩都为((n-r)(n-r-1))/2+r(n-r)+1。

关键词: 变换半群, 核, 固定集, 幂等元秩

Abstract: Let Tn be the full transformation semigroup on Xn={1,2,…,n}. Let 1≤r≤n, putF(n,r)={α∈Tn:iα=i, ∠i∈{1,2,…,r}},it is obvious that the semigroup F(n,r) is subsemigroup of Tn. In the paper, we study the core(C F(n,r))=〈E(F(n,r))〉 of the semigroup F(n,r), where E(F(n,r))={α∈F(n,r)2=α}, by analyzing idempotents of the semigroup F(n,r), we prove that the rank and idempotent rank of semigroup C F(n,r) are both equal to ((n-r)(n-r-1))/2+r(n-r)+1.

Key words: transformation semigroup, core, fixed set, idempotent rank

中图分类号: 

  • O152.7
[1] HOWIE J M. Idemotent generators in finite full transformation semigroups*[J]. Proceedings of the Royal Society of Edinburgh, 1978, 81(A):317-323.
[2] HONYAM P, SANWONG J. Semigroups of transformations with fixed sets [J]. Quaestiones Mathematicae, 2013, 36:79-92.
[3] GOMES G M S, HOWIE J M. On the ranks of certain finite semigroups of transformations[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1987, 101:395-403.
[4] GARBA G U. On the idempotent ranks of certain semigroups of order-preserving transformations[J]. Portugaliae Mathematica, 1994, 51:185-204.
[5] LEVI I. Nilpotent ranks of semigroups of partial transformations[J]. Semigroup Forum, 2006, 72:459-476.
[6] CEGARRA A M, PETRICH M. The rank of a commutative semigroup[J]. Mathematica Bohemica, 2009, 134(3):301-318.
[7] XU B. The rank of a class of transformation semigroups[J]. Mathematics in Practice and Theory, 2010, 8:222-224.
[8] ZHAO P. The ranks of ideals in various transformation monoids[J]. Communications in Algebra, 2015, 43:674-692.
[9] ZHAO P, YOU T J. The(p,q)-potent ranks of certain semigroups of transformations[J]. Journal of Algebra and Its Applications, 2017, 16(7):1-12.
[10] ZHAO P. On the nilpotent ranks of the principal factors of orientation-preserving transformation semigroups[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41(4):1795-1803.
[11] KORKMAZ E, AYIK H. Ranks of nilpotent subsemigroups of order-preserving and decreasing transformation semigroups[J]. Turkish Journal of Mathematics, 2021, 45:1626-1634.
[12] AYLK G. On the rank of generalized transformation semigroups[J]. Bulletin of the Malaysian mathematical sciences society, 2022, 45:1777-1787.
[13] 张前滔, 罗永贵, 赵平. 半群PD(n,r)的秩和相关秩[J]. 山东大学学报(理学版), 2020, 55(10):63-70. ZHANG Qiantao, LUO Yonggui, ZHAO Ping. Rank and relative rank of the semigroup PD(n,r)[J]. Journal of Shandong University(Natural Science), 2020, 55(10):63-70.
[14] 徐波, 高荣海, 卢琳璋. 1-奇异变换半群Tn(1)的秩[J]. 山东大学学报(理学版), 2022, 57(12):81-85. XU Bo, GAO Ronghai, LU Linzhang. Rank of the 1-singular transformation semigroup Tn(1)[J]. Journal of Shandong University(Natural Science), 2022, 57(12):81-85.
[15] 赵平. 半群V(n,r)的幂等元秩[J]. 山东大学学报(理学版), 2012, 47(2):78-81. ZHAO Ping. On the idempotent ranks of the semigroup V(n,r)[J]. Journal of Shandong University(Natural Science), 2012, 47(2):78-81.
[16] HOWIE J M. Fundamentals of semigroup theory[M]. London: Oxford University Press, 2003.
[1] 王玲,赵彬. Z-Quantale及其性质[J]. 《山东大学学报(理学版)》, 2024, 59(6): 76-83.
[2] 孙嘉睿,杜明晶. 模糊边界剥离聚类[J]. 《山东大学学报(理学版)》, 2024, 59(3): 27-36, 50.
[3] 程杨,崔雨茹. 核-EP分解的弱核逆[J]. 《山东大学学报(理学版)》, 2023, 58(3): 19-24.
[4] 霍慧敏,宋贤梅,李明珠. 对合环上核EP逆的广义Jacobson引理和广义Cline公式[J]. 《山东大学学报(理学版)》, 2023, 58(3): 25-32.
[5] 李春华,孟令香,方洁莹. 型B半群上的同余[J]. 《山东大学学报(理学版)》, 2023, 58(2): 20-27.
[6] 李颖,张国林. 互信息和核熵成分分析的油中溶解气体浓度建模[J]. 《山东大学学报(理学版)》, 2022, 57(7): 43-52.
[7] 史鹏伟,陶双平. 极大变指标Herz空间上的参数型粗糙核Littlewood-Paley算子[J]. 《山东大学学报(理学版)》, 2022, 57(12): 45-54.
[8] 郭战胜,张海涛,侯旭光. 4种鲍肠道菌群多样性比较[J]. 《山东大学学报(理学版)》, 2022, 57(1): 1-7.
[9] 邓书鸿,郭传恩,姜红,聂磊. 核磁共振指纹图谱用于阿胶的鉴别[J]. 《山东大学学报(理学版)》, 2021, 56(7): 103-110.
[10] 王小刚,李冰. 基于核函数方法的逐段线性Tobit回归模型估计[J]. 《山东大学学报(理学版)》, 2020, 55(6): 1-9.
[11] 唐益明,张征,芦启明. 分段二次方转换函数驱动的高斯核模糊C均值聚类[J]. 《山东大学学报(理学版)》, 2020, 55(3): 107-112.
[12] 袁月,赵平. 半群H *(n,m)(r)的极大子半群与极大正则子半群[J]. 《山东大学学报(理学版)》, 2020, 55(12): 19-24.
[13] 张前滔,罗永贵,赵平. 半群PD(n,r)的秩和相关秩[J]. 《山东大学学报(理学版)》, 2020, 55(10): 63-70.
[14] 金久林,腾文,祝富洋,游泰杰,瞿云云. 有限弱Y-稳定变换半群的极大子半群[J]. 《山东大学学报(理学版)》, 2020, 55(10): 55-62.
[15] 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!